
Siloz: Leveraging DRAM Isolation Domains
to Prevent Inter-VM Rowhammer

Kevin Loughlin
University of Michigan

Jonah Rosenblum
University of Michigan

Stefan Saroiu
Microsoft

Alec Wolman
Microsoft

Dimitrios Skarlatos
Carnegie Mellon University

Baris Kasikci
University of Washington and Google

Abstract
Today’s cloud DRAM lacks strong isolation primitives, high-
lighted by Rowhammer bit flips. Rowhammer poses an in-
creasing threat to cloud security/reliability, given (1) DRAM
activation rates in commodity and malicious workloads al-
ready exceed Rowhammer thresholds, and (2) thresholds are
decreasing in newer DRAM. Deployed hardware mitigations
remain vulnerable, turning cloud providers toward software
defenses. However, existing defenses incur high performance
or memory overhead or contain significant protection gaps.
Accordingly, we introduce Siloz, a hypervisor that uses

subarray groups as DRAM isolation domains to enable effi-
cient protection against inter-VM Rowhammer. Siloz exploits
the insights that (a) Rowhammer can only flip bits in DRAM
rows located in the same subarray—not across subarrays—
and (b) VMs can be isolated to groups of subarrays with-
out sacrificing bank-level parallelism, a key component of
DRAM performance. Siloz thus prevents inter-VM bit flips
by placing each VM’s and the host’s data into private subar-
ray groups. To additionally ensure that a VM cannot escape
its provisioned subarray group(s), Siloz provides integrity
protection for extended page tables (EPTs). We show that
Siloz’s implementation has negligible effect on average per-
formance across various cloud workloads, SPEC CPU 2017,
and PARSEC 3.0 (within ±0.5% of baseline Linux/KVM).

CCS Concepts: • Security and privacy→ Systems secu-
rity; Security in hardware.

Keywords: DRAM Disturbances, DRAM Isolation Domains,
DRAM Subarrays, Rowhammer, Security
ACM Reference Format:
Kevin Loughlin, Jonah Rosenblum, Stefan Saroiu, Alec Wolman,
Dimitrios Skarlatos, and Baris Kasikci. 2023. Siloz: LeveragingDRAM
IsolationDomains to Prevent Inter-VMRowhammer. InACMSIGOPS
29th Symposium on Operating Systems Principles (SOSP ’23), October

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SOSP ’23, October 23–26, 2023, Koblenz, Germany
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0229-7/23/10.
https://doi.org/10.1145/3600006.3613143

23–26, 2023, Koblenz, Germany. ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/3600006.3613143

1 Introduction
Cloud providers host virtual machines (VMs) from multiple
tenants atop the same physical machine, while providing
per-VM isolation across various metrics [38, 126]. To provide
per-VM performance isolation, providers use a rich set of
technologies across hardware resources (e.g., CPU affinity
[99], SR-IOV [32], and memory bandwidth allocation [55]).
Although providers can also use a growing set of methods to
provide per-VM security isolation (e.g., CPU enclaves [27],
cache partitioning [81], and memory encryption [3, 54]),
providers lack practical means to provide strong isolation in
one of the most significant cloud server resources: DRAM.

In particular, today’s servers interleave (spread) data from
multiple tenants across different DRAM banks, ranks, and
channels to maximize the memory-level parallelism afforded
by these structures [102, 143]. Unfortunately, sharing these
structures without careful consideration exposes co-located
VMs to interference [40, 122, 134, 135], including the security
and reliability threat of Rowhammer bit flips [79]. To combat
interference, we envision a future in which cloud providers
can leverage DRAM isolation domains that provide isolation
capabilities in line with those of other hardware resources.

The goal of this work is to enable cloud providers to take
the first step toward practically managing DRAM as a set of
isolated domains. To achieve this goal, we propose the use of
DRAM subarrays for isolation. DRAM consists of many sub-
arrays that are natural isolation boundaries of DRAM cells
[80]: cells in one subarray cannot disturb cells in another [24].
While DRAM does not expose subarrays today, software can
easily determine subarray boundaries (§4.1). By using subar-
rays, we show that inter-VM Rowhammer can be prevented
on today’s cloud servers without sacrificing performance.

1.1 This Paper: Mitigating Inter-VM Rowhammer
Inter-VM Rowhammer is a glaring example of today’s lack of
DRAM isolation; a VM’s frequent activations (≈ accesses) of
the same DRAM rows—“hammering”—can flip bits in nearby
rows used by another VM or the host. Bit flips can cause data
loss [79], machine check exceptions [25], denial-of-service
[58], side channels [22, 86], and system subversion [133].

417



Despite deployed hardware mitigations [25, 37, 59, 83],
cloud systems remain vulnerable to inter-VM hammering. In
fact, recent work [98] shows that malicious and commodity
cloud workloads already activate rows at rates exceeding to-
day’s Rowhammer thresholds. As these thresholds continue
to decrease with process scaling [24, 74, 129], Rowhammer
poses an increasing threat to security and reliability.

State-of-the-art software defenses incur high memory/per-
formance overhead or contain significant gaps in protection.
SoftTRR [173] and CTA [161] do not scalably-generalize
beyond page table protection, leaving all other data vulnera-
ble. Copy-on-Flip [31] does not protect unmovable memory
pages (i.e., a subset of kernel pages) and is susceptible to ECC-
corrected disturbances, which can leak data [25]. “Guard row”
mitigations [11, 12, 84]—where a set of guard rows are re-
served as protection buffers between normal rows—require
≥ 50% extra DRAM per protected region and thus only scale
to protect small quantities of data.
Given the limitations of existing software Rowhammer

mitigations—coupled with the dearth of hardware DRAM
isolation support—cloud providers lack practical means to
mitigate inter-VM Rowhammer. Thus, we introduce Siloz,
a hypervisor that uses subarray groups as DRAM isolation
domains to prevent inter-VM hammering with negligible
performance effect; Siloz integrates subarray group isolation,
bank-level parallelism, and extended page table (EPT) in-
tegrity for efficient protection against inter-VM hammering.

Siloz’s key insight is that subarray-based Rowhammer iso-
lation can co-exist with bank-level parallelism. Bank-level
parallelism is the finest-grained access parallelism exposed
by modern DRAM, offering > 18% execution time improve-
ment [143]. As such, Siloz enables high performance along-
side per-VM Rowhammer isolation by partitioning DRAM
into subarray groups of ≈ 1.5 GiB each (depending on DRAM
geometry), formed from at least 1 subarray per each bank in
a memory pool. Thus, a VM using subarray group(s) can al-
locate memory across banks, yet isolated to select subarrays.

To conveniently manage subarray groups, Siloz builds on
existing non-uniform memory access (NUMA) support. Siloz
abstracts subarray groups as logical NUMA nodes, enabling
robust memory management, while maintaining compati-
bility with physical NUMA performance optimizations (e.g.,
Siloz can use same-socket subarray groups for lower latency).

Notably, Siloz’s ability to enforce subarray group isolation
relies on EPT integrity; because EPTs define the host physical
addresses that VMs can access, a malicious VM could induce
bit flips in even its own EPTs to access another domain [133].
While emerging Intel and AMD hardware offer support for
EPT integrity checks [3, 54], Siloz can also protect against
EPT bit flips on legacy systems. Namely, Siloz exploits the
insight that all EPTs can fit in < 0.001% of DRAM rows and
are thus amenable to supplemental guard row protection
without significant cost. By accounting for server DRAM
addressing alongside prior guard row techniques [11, 12, 84],

Siloz limits DRAM overheads for EPT protection to just 32 8
KiB rows per bank (≈ 0.024% of a 1 GiB bank).
We evaluate Siloz’s Linux/KVM [82] implementation on

Intel Skylake servers based on a major cloud provider’s con-
figuration, demonstrating that Siloz prevents inter-VM ham-
mering and EPT bit flips. We find that Siloz’s combination
of subarray group isolation and EPT protection has negligi-
ble effect on average performance (within ±0.5% of baseline
Linux/KVM) across various cloud workloads [14, 26, 67, 85,
118], SPEC CPU 2017 [13], and PARSEC 3.0 [10, 170].

In summary, we make the following contributions:
• We present Siloz, a hypervisor that uses subarray groups
as high-performance DRAM isolation domains in the cloud.

• To safeguard isolationmetadata, Siloz places EPTs in guard-
protected rows, using knowledge of DRAM addressing to
securely limit reserved DRAM to ≈ 0.024% of each bank.

• We show that Siloz offers cloud providers a practical and
comprehensive mitigation for inter-VM hammering, pro-
viding complete protection with negligible effect on aver-
age performance (within ±0.5% of baseline Linux/KVM).

Siloz’s Linux/KVM implementation is open-source [95].

2 Background
In this section, we present background on server systems,
DRAM, and Rowhammer as needed to understand Siloz.

2.1 Hypervisor Memory Management
State-of-the-art hypervisors like Linux/KVM [82] use hard-
ware virtualization extensions (e.g., Intel VT-x [148] or AMD-
V [69]) to map host memory pages into a VM’s address space.
The VM can then access the vast majority of its memory
without performance-costly traps/exits into the hypervisor.

While an OS manages mappings between two types of
addresses (virtual and physical) for standard processes, a hy-
pervisor manages mappings among three types of addresses
for VMs: (1) guest virtual addresses (GVAs, equivalent to stan-
dard virtual addresses), (2) guest physical addresses (GPAs,
the VM’s illusion of physical addresses), and (3) host physical
addresses (HPAs, equivalent to standard physical addresses).
The guest OS’s page tables map GVAs to GPAs, while the
hypervisor’s extended page tables (EPTs) map GPAs to HPAs.

2.2 Non-Uniform Memory Access (NUMA)
Cloud providers deploy large quantities of compute andmem-
ory per server for cost effectiveness and ease of manage-
ment. To scale performance amidst large resource quantities,
servers are often architected as non-uniform memory access
(NUMA). A NUMA node conventionally refers to a combina-
tion of cores (e.g., a socket) and a local (near) memory pool
that is faster to access than remote (far) memory; technically,
a node may consist of only cores, only memory, or both.

NUMA’s key benefits are its abilities to decrease latencies
for workloads using local memory and to reduce interference

418



(e.g., memory traffic) among independent tasks on different
nodes. Additionally, kernel NUMA support offers convenient
abstractions to manage compute and/or memory resources.

2.3 Server DRAM (Micro)architecture
A server DRAM module is a hierarchically-organized set
of DRAM cells, each storing a bit as high/low charge. Each
module is typically attached to a CPU socket, with the socket
and its modules forming a conventional NUMA node (§2.2).

Because DRAM cell charges diminish over time, memory
controllers and DRAM modules cooperate to periodically
refresh the charges for data retention. In widely-deployed
DDR4 [60] DRAM, cells are refreshed within 64 milliseconds.
As shown in Fig. 1, the DRAM module hierarchy is a

set of ranks, each encompassing banks, each encompassing
subarrays, which are each a row-column grid of cells. The
DDR4 standard specifies that a rank holds up to 16 banks,
and a row holds up to 8 KiB of cells. Internal to server DRAM
modules, each of a subarray’s 8 KiB rows is split into two
half-rows across a rank’s “A” and “B” sides, with each half-
row simultaneously serving half of a given data request [62].
While a row’s external representation (i.e., a single 8 KiB
structure) is sufficient to understand the majority of Siloz’s
design, we discuss the relevance of internal half-rows in §6.

Although many other (micro)architectural details are ven-
dor-specific, a common server DDR4 DRAMmodule is a dual-
rank, 32 GiB DIMM (dual in-line memory module). Given 32
GiB split across 2 ranks and 16 banks/rank, a bank is 1 GiB.
Each bank is divided among a vendor-specific number of
subarrays [18, 24, 80, 100, 155], each consisting of 512–2048
rows [155]. For example, Siloz’s evaluation server’s subarray
size of 1024 8 KiB rows yields 128 subarrays per 1 GiB bank.

2.4 Accessing Data in DRAM
To read/write data in DRAM, a memory controller first trans-
lates the data’s host physical address to a media address
that identifies specific DRAM cells. The parallel in the CPU
realm is a virtual-to-physical address mapping, which sys-
tem software typically controls at page-sized granularity
(§2.1). However, unlike software-defined virtual-to-physical
mappings, physical-to-media mappings are fixed at boot via
BIOS settings [49, 56] and applied at cache line granularity.

Given the data’s media address, the controller first issues
an activate (ACT) to the row containing the data. This com-
mand connects the row to its encompassing bank’s row buffer,
which can only be occupied by one row per bank at a time.
The controller then issues a read or write command to an
offset within the row buffer, completing the data access.
While accesses to a single bank are serialized, different

banks can be accessed in parallel. Thus, commodity physical-
to-media address mappings maximize throughput by inter-
leaving (spreading) sequential cache lines across a conven-
tional NUMA node’s (e.g., socket’s) banks, achieving bank-
level parallelism for common access patterns [96, 143, 171].

DRAM Bank
Col 0 Col 1 Col 2 Col 3

A-side B-side

Subarray 0
Row 0

Row 1

Row 2

Row 3

Subarray 1
Row 4

Row 5

Row 6

Row 7

Aggressor (Activated) Row

Victim Row

Unaffected Row

DRAM Rank

Bank 0

Bank 1

Bank 2

Bank 3

DRAM Module

Rank 0

Rank 1

Victim Row

Victim Row

Unaffected Row

Unaffected Row

Unaffected Row

Figure 1. A simplified DRAM module hierarchy (§2.3) in the
context of a DRAM row activation (§2.4) and Rowhammer
(§2.5). A frequently-activated (“hammering”) aggressor row
may flip bits in victim rows in the same subarray.

2.5 Rowhammer and RowPress
Rowhammer [79] is a silicon-level effect in DRAM where
frequent ACTs (§2.4) of the same aggressor rows can flip bits
in nearby victim rows due to electric interference. Namely,
an ACT’s side effects include (a) refreshing charges in the ac-
tivated row, but (b) potentially disturbing charges in nearby
rows. When aggressor rows are activated at rates exceeding
Rowhammer thresholds (varying across DIMMs), cumulative
disturbance effects may flip bits in victim rows that have not
been recently-refreshed. Per Fig. 1, rows in the aggressor’s
subarray are potential victims, while rows in different subar-
rays are unaffected due to electric isolation [18, 24, 96, 164].
Rowhammer bit flips can cause data loss [79], machine

check exceptions [25], denial-of-service [58], side channels
[22, 86], and system subversion [133]. Recent work [98]
shows that malicious and commodity workloads can yield
ACT rates surpassing modern Rowhammer thresholds; other
work [24, 74, 129] shows that thresholds are decreasing with
process node scaling (i.e., susceptibility is increasing).
To mitigate Rowhammer, modern servers rely on error

correction codes (ECC [7]) and target row refresh (TRR [37],
an in-DRAM mitigation that refreshes a subset of victim
rows ahead of schedule). While these mitigations have thus
far proved effective for commodity workloads, malicious
workloads can induce uncorrected bit flips despite ECC [25]
and TRR [28, 37, 59, 83]. Even corrected bit flips are a security
concern, forming side channels that can leak a row’s data to
attackers with access to other rows in the subarray [86].

RowPress [101] is a similar, recently-discovered phenom-
enon in which aggressor rows left activated for long time
periods of time may flip bits in nearby victim rows. Because
subarrays can also form isolation boundaries for such distur-
bances, this paper treats RowPress similar to Rowhammer.

3 Limitations of Existing Software Defenses
Given gaps in hardware mitigations and the goal of per-VM
isolation, cloud providers can use software to supplementally

419



mitigate inter-VM hammering, where a VM’s hammering can
flip bits in another VM or the host. Unfortunately, existing
software mitigations fail to mitigate such hammering with-
out significant performance/memory overheads (if at all),
motivating Siloz’s design. Broadly, existing software mitiga-
tions adopt one of three approaches: selectively-protecting
data, detecting attacks in progress, or inserting guard rows.

Mitigation via Selective Data Protection. The first miti-
gation class protects a subset of data as a security-performance
trade-off [161, 173]. For instance, SoftTRR [173] periodically
sets reserved bits in page table entries for potential aggressor
rows. Thus, accesses to the designated aggressors will trap
into system software, which can refresh neighboring victims
before the aggressors surpass the Rowhammer threshold.
The key limitation of these defenses is that they only

protect a small portion of a VM’s data (e.g., page tables) for
acceptable performance overheads. As we will show, Siloz
protects all of a VM’s data against another VM’s hammering.

Mitigation via AttackDetection. The secondmitigation
class aims to detect Rowhammer and correspondingly stop
the attack [5, 17, 31]. For instance, Copy-on-Flip [31] uses
ECC-corrected disturbances to identify pages under attack
and—if the pages are movable—migrate them in DRAM.
The key limitation of these approaches is that their de-

tection methods do not prevent all disturbances. For exam-
ple, the ECC-corrected disturbances used for detection in
Copy-on-Flip can leak data [90]. In contrast, Siloz’s subarray
groups isolate each VM from another’s hammering, agnostic
to Rowhammer thresholds and a VM’s hammering method.

Mitigation via Guard Rows. Several proposed software
Rowhammer mitigations [11, 12, 84] place guard rows be-
tween isolation domains (e.g., user-kernel or different pro-
cesses). These mitigations exploit the fact that Rowhammer
only affects data in nearby rows (§2.5), reserving guard rows
as protection barriers between “normal” rows. If hammering
occurs in the normal rows, it can only flip bits in guard rows,
which are unused or contain supplementally-protected data.

Thesemitigations’ key limitation is that theywaste DRAM;
the guard rows cannot be used as normal rows. Protecting ar-
bitrary data incurs large overheads (i.e., ≥ 50% extra DRAM
per protected region [84], where DRAM is often the dom-
inant cloud hardware cost [157]). Thus, guard rows only
practically scale to protect small quantities of data (§5.4).

Furthermore, because guard rows still share circuitry with
normal rows, increasing Rowhammer susceptibility requires
increasing quantities of guard rows for mitigation. For in-
stance, ZebRAM’s [84] 50% DRAM overhead at 1 guard row
per normal row rises to 80% at a modern requirement of 4
guard rows per normal row on server DIMMs [24, 129].

As we will show (§6), Siloz use of subarray groups against
inter-VM hammering (a) allows ≈ 98.5%–100% of DRAM to
be used as normal rows (b) offers fundamental, silicon-level
Rowhammer isolation, and (c) accounts for server DRAM
addressing in both normal rows and potential guard rows.

Bank 0
Page 3,Chunk A
Page 2,Chunk A 
Page 1,Chunk A
Page 0,Chunk A

DRAM Rank 1DRAM Rank 0

Socket 0 Memory Controller

Bank 1
Page 3,Chunk B
Page 2,Chunk B
Page 1,Chunk B
Page 0,Chunk B

Bank 0
Page 3,Chunk C
Page 2,Chunk C 
Page 1,Chunk C
Page 0,Chunk C

Bank 1
Page 3,Chunk D
Page 2,Chunk D
Page 1,Chunk D
Page 0,Chunk D

Subarray Group 1

Subarray Group 0
Row Group 0

Row Group 2
Row Group 1

Row Group 3

Figure 2. Subarray groups in a DRAM hierarchy (§4.1). As-
cending physical pages are mapped to ascending row groups—
and by extension, subarray groups—in a physical node (§4.2).
For simplicity, we depict 2 rows per subarray, 1 page per row
group, and a monotonically-ascending mapping.

4 Subarray Group Primitive
In this section, we introduce the subarray group that Siloz
uses as a DRAM isolation domain. Recall that each DRAM
bank is composed of a set of row-column subarrays, where
Rowhammer is ineffective across subarray boundaries (§2.5).
Accordingly, the key motivation behind subarray groups is
that different VMs occupying disjoint subarray(s) cannot
directly hammer each other. We first describe the structure
of subarray groups in DRAM (§4.1) before detailing how
system-level memory pages map to subarray groups (§4.2).

4.1 Subarray Groups in DRAM
While each individual subarray offers a unit of Rowham-
mer isolation, Siloz opts to provide isolation via subarray
groups, defining a subarray group as a collection of at least
1 subarray from each bank in a physical1 NUMA node (e.g.,
socket). As motivation behind Siloz’s use of subarray groups,
we consider the challenges of isolation to a single subarray.
In particular, allocating a page of memory on a single subar-
ray on modern servers is not practical—if even feasible—due
to (a) physical-to-media address mappings that interleave
individual pages across a physical node’s banks to achieve
bank-level parallelism (§2.4), and (b) the performance impact
of eliminating such parallelism (e.g., > 18% for some work-
loads [143]), if such an option is supported in BIOS/firmware.

Overcoming these challenges, Siloz’ subarray groups’ com-
position from subarrays across every bank in a physical node
maintains high throughput and is compatible with physical-
to-media mappings. Per the example in Fig. 2, given a fixed
subarray size of 𝑟 rows, subarray group 0 is comprised of
rows [0, 𝑟 ) in each of a physical node’s banks (i.e., row groups
[0, 𝑟 )), subarray group 1 of row groups [𝑟, 2𝑟 ), and so on.
While we do not observe heterogeneously-sized subarrays

in Siloz’s evaluation platform, subarray group composition
can be trivially-adjusted to account for possible heterogene-
ity [18, 88, 117, 139, 155]. For instance, prior work [117] has
observed that a pattern of 3 heterogeneous subarrays repeats
every 2048 rows in certain modules. Here, subarray group 𝑠
1We refer to conventional NUMA nodes (§2.2) as physical nodes to distin-
guish them from Siloz’s logical nodes (§5.2).

420



could be composed from the 𝑠th set of subarrays (e.g., subar-
rays 0, 1, and 2) in each bank. Composition can be similarly
adjusted for modules that activate subarrays in pairs [117].
A subarray group’s size is thus the product of a server’s

banks per physical node, rows per subarray (set), and row
size. Banks per physical node and row size are reported to
system software. While subarray sizes are not reported in
DDR4 [60], we have confirmed with a major cloud provider
that DRAM vendors can share subarray sizes with them.
Even without (ideal) cooperation from DRAM vendors,

one can infer subarray sizes using prior methodologies [24,
166]. We apply the mFIT [24] methodology to Siloz’s evalua-
tion platform, observing a pattern of failed Rowhammer at-
tacks at multiples of 1024 rows. Thus, we infer a subarray size
of 1024 rows, consistent with prior work [19, 72, 73, 80, 88].

Given the server’s 192 banks/physical node and 8 KiB/row,
1024-row subarrays yield a subarray group size of 1.5 GiB
(192 banks/physical node ∗ 1024 rows/subarray ∗ 8 KiB/row).
For subarray sizes in the modern range of 512–2048 rows
[155], the group size linearly-increases from 0.75 GiB to 3
GiB. We compare managing different group sizes in §7.4.

4.2 Mapping Pages to Subarray Groups
Subarray group isolation can only work if entire pages map
to the same subarray group(s). This is because hypervisors—
including Siloz—provision memory to VMs in pages (§2.1),
meaning that a VM is only isolated if its pages reside in the
same private subarray group(s). We thus detail how commod-
ity x86-64 physical-to-media addressing maps 2 MiB and 4
KiB pages to single subarray groups, enabling isolation. We
then discuss 1 GiB pages, which pose an additional challenge.

2 MiB and 4 KiB Pages. Given 2 MiB alignment in com-
modity subarray group sizes (with handling of exceptional
cases discussed in §6), we exploit the insight that 2 MiB
and 4 KiB pages map to a single subarray group on servers
that adopt a generally-ascending physical-to-media address
mapping. For instance, to a first approximation of Intel’s
Skylake-based server mappings, row groups are populated
in ascending order by ascending page numbers (Fig. 2). As-
suming one page per row group for visualization, page 0
maps to row group 0, page 1 to row group 1, and so on.

Considering the finer details of Intel’s mapping, increasing
page numbers do not monotonically-ascend through all row
groups, but still result in a layout where 2 MiB and 4 KiB
pages map to the same subarray group (maintaining isola-
tion capabilities). Specifically, every 𝑛 rows groups are pop-
ulated in alternating ascending fashion by two individually-
contiguous physical address ranges 𝐴 and 𝐵, where 𝑛 = 16
based on the memory geometry of Siloz’s evaluation server
(and 16 row groups is 24 MiB of memory: 8 KiB/row ∗ 16
rows/bank ∗ 192 banks/socket). Row groups [0, 𝑛) are pop-
ulated by the first chunk of range 𝐴, row groups [𝑛, 2𝑛) by
the first chunk of range 𝐵, row groups [2𝑛, 3𝑛) by the sec-
ond chunk of range 𝐴, and so on—until repeating with new

ranges at a second, 768 MiB-aligned mapping “jump”. Cru-
cially, because these chunks align with and encompass entire
2 MiB pages, subarray group isolation remains possible.

1 GiB Pages. The aforementioned address “jump” at 768
MiB-aligned addresses means that 1 GiB (1024 MiB) pages do
not inherently map to a single subarray group. However, by
constructing sets of consecutive subarray groups totaling 3
GiB in size (e.g., 2 sets of 1024-row subarray groups, each 1.5
GiB), we find that at least 1/3 of 1 GiB physical address ranges
map to single 3 GiB sets, enabling isolation of associated
pages. The remaining 2/3 of memory must be allocated as 2
MiB or smaller pages to preserve isolation.

5 Siloz Hypervisor Design
In this section, we present the design of a hypervisor, Siloz,
built to provide efficient inter-VM Rowhammer protection
by placing VMs in private subarray group(s). We first de-
tail Siloz’s policy for inter-VM isolation via subarray groups
(§5.1) and how Siloz introduces logical NUMA nodes to man-
age this policy (§5.2). We then describe a subarray group’s
lifetime from host boot to shutdown (§5.3). Finally, we dis-
cuss integrity protection for the extended page tables (EPTs)
that Siloz uses to enforce subarray group isolation (§5.4).

For convenient concrete examples, we discuss Siloz and its
subarray groups in the context of a Linux/KVM baseline hy-
pervisor, Siloz’s evaluation server—a dual-socket, 192 DRAM
banks/socket (i.e., physical node), major cloud provider-based
Intel Skylake configuration—and a commodity subarray size
of 1024 rows [19, 72, 73, 80, 88] (as found on Siloz’s evalu-
ation server, resulting in a subarray group size of 1.5 GiB,
§4). However, Siloz’s design principles generalize to other
hypervisors, memory geometries, subarray sizes, and—given
similar physical-to-media address mappings—CPU vendors;
we have verified Siloz’s functionality on Intel Skylake and
Cascade Lake servers with different memory geometries.

Deployment Environment. In line with our major cloud
provider partner, Siloz does not sharememory among tenants
for security and backs guest DRAMwith reserved huge pages,
which cannot be paged, for high performance [103, 175].

5.1 Subarray Group Isolation: Goal and Policy
Siloz places each VM and the host into private subarray
groups, such that the effects of hammering are restricted
to one’s own domain. Siloz correspondingly classifies each
subarray group as either host-reserved (usable by the host)
or guest-reserved (usable by exactly one VM).

Siloz decides whether to allocate a page from a particular
host- or guest-reserved subarray group based on if the page
is unmediated as henceforth defined. If a VM can directly
access the page (e.g., without a VM exit), the page is unmedi-
ated and should be allocated from one of the VM’s subarray
groups. Intuitively, unmediated pages include those mapped
into the VM’s address space that will not cause a VM exit

421



Subarray Group 0

Subarray Group 1

Bank 0
EPT

Guard
Mediated

Host
Unmediated
Unmediated
Unmediated
Unmediated
Unmediated
Unmediated
Unmediated
Unmediated

DRAM Rank 0

Socket 0 Memory Controller

Subarray Group 2

HardwareSiloz Hypervisor

Guests DRAM Rank 1

Node 2-A (Host)
Host processes+kernel,

mediated VM pages

Node 1 (Guest)
Unmediated
VM 1 pages

Node 0 (Guest)
Unmediated
VM 0 pages

VM 1
EPT Pages

Mediated Pages
Unmediated Pages

VM 0
EPT Pages

Mediated Pages
Unmediated Pages

Node 2-B (EPT)
EPT pages,

Guard row pages

Bank 1
EPT

Guard
Mediated

Host
Unmediated
Unmediated
Unmediated
Unmediated
Unmediated
Unmediated
Unmediated
Unmediated

Bank 0
EPT

Guard
Mediated

Host
Unmediated
Unmediated
Unmediated
Unmediated
Unmediated
Unmediated
Unmediated
Unmediated

Bank 1
EPT

Guard
Mediated

Host
Unmediated
Unmediated
Unmediated
Unmediated
Unmediated
Unmediated
Unmediated
Unmediated

Figure 3. Siloz prevents inter-VM hammering by placing specific pages in host- or guest-reserved subarray groups, based on
whether a VM has unmediated access to the pages (§5.1). Siloz abstracts subarray groups as logical NUMA nodes (§5.2) for
convenient memory management throughout system lifetime (§5.3). Because extended page tables (EPTs) enforce subarray
group isolation, Siloz supplementally ensures EPT integrity using emerging hardware extensions [3, 54] or guard rows (§5.4).

for some access type (e.g., guest RAM, guest ROM due to un-
mediated reads, and select MMIO pages). More specifically,
Siloz classifies pages based on their existing QEMU memory
type [30], indicating which access types trigger exits, if any.
Siloz allocates other pages from host-reserved subarray

groups, including mediated, host-only, and EPT pages. We
defer discussion of Siloz’s protection for EPT pages to §5.4.

The rationale behind Siloz’s policy is that a VM can trivially-
hammer memory to which it has unmediated access; such
memory should therefore be contained to the VM’s subarray
group(s) to maintain isolation. Conversely, theoretical “con-
fused deputy” hammering by host software (i.e., maliciously-
exiting into the hypervisor in a manner that tricks host
software into hammering) is a comparatively-difficult—and
undemonstrated—attack vector. Thus, host-mediated pages
are already relatively-guarded against use for Rowhammer.
More importantly, should such confused deputy hammering
ever prove feasible, the required VM exit means that the host
could easily apply its own mitigation for this hammering
(e.g., rate-limiting exit-induced memory accesses).

For guest IO, the current Siloz prototype uses paravirtu-
alization (virtio [127]). Thus, the hypervisor manages (i.e.,
can rate-limit) DMAs on behalf of the guest, meaning the
guest cannot issue unmediated DMAs to hammer. To instead
support secure passthrough IO (SR-IOV [32]), Siloz would
need to (1) ensure that the virtual device’s IOMMU restricts
each guest to perform DMAs within the bounds of the guest
subarray groups’ address ranges, and (2) protect the corre-
sponding IOMMU page table pages akin to EPT pages.

5.2 Subarray Groups as Logical NUMA Nodes
To manage subarray group isolation, Siloz introduces the
concept of logical NUMA nodes. A logical NUMA node is a
memory pool consisting of at least 1 subarray group and is
thus a subset of a physical NUMA node; logical nodes are
hence similar to zNUMA nodes [92].

The key benefit of abstracting subarray groups as (logical)
NUMA nodes is that Siloz can manage isolation via existing
and robust kernel NUMA primitives. Furthermore, similar
NUMA support exists across major hypervisors [109, 153,
162], allowing Siloz’s design to generalize beyond Linux/KVM.

To preserve physical NUMA semantics alongside logical
NUMA extensions, Siloz maintains a mapping from each
logical node to its physical node. Thus, Siloz can support
isolation without sacrificing physical NUMA optimizations.
For instance, a VM can be comprised of logical nodes from
the same physical node to avoid remote NUMA latencies.

Logical nodes consisting of guest-reserved subarray groups
are guest-reserved nodes. Such nodes comprise all but one
logical node per socket and arememory-only (i.e., no directly-
associated compute resources, §2.2). This design, coupled
with a Linux control group [33] that limits memory alloca-
tions to specific nodes [71], restricts the use of guest-reserved
nodes to requests from KVM-privileged processes (§5.3).

The remaining logical nodes correspond to host-reserved
subarray groups and are hence classified as host-reserved
nodes. Unlike guest-reserved nodes, host-reserved nodes are
associated with both subarray group(s) and their correspond-
ing socket’s cores. Again coupled with a Linux control group,
this design restricts Siloz to host-reserved nodes by default
for both memory allocations and scheduling decisions.

5.3 Lifetime of a Subarray Group
Siloz calculates which physical pages map to which subarray
groups during early boot, enabling isolation from boot until
shutdown. The number of rows per subarray is passed as a
boot parameter. To determine the physical-to-media address
mapping (required to map physical addresses to subarray
groups), Siloz uses its ports of existing drivers [48, 56] for
such translations, modified to operate during early boot.
Because physical-to-mediamappings are fixed based on BIOS
settings (§2.4), the calculated subarray group address ranges
can be cached across boots in a bootloader or firmware.

422



Once the subarray group address ranges are loaded, Siloz
augments existing NUMA topology parsing logic [147] to
(a) provision a logical node for each subarray group, and (b)
store a mapping from the logical node to its corresponding
physical node to preserve physical NUMA semantics (§5.2).

After the required nodes are in place and boot is complete,
a privileged user can create a control group with exclusive
access to available guest-reserved nodes. A QEMU [8] pro-
cess, which manages a KVM VM, can then allocate memory
on the guest-reserved nodes if the process (a) belongs to the
control group, and (b) has KVM privileges. To request this
memory, QEMU uses a newUNMEDIATED flag in itsmmap()
calls for unmediated memory ranges; recall that mediation
status is provided by existing QEMU memory types (§5.1).
Upon parsing the flag, Siloz checks whether the requesting
process is permitted to access guest-reserved nodes, and if
so, allocates the memory from the appropriate nodes.

During VM execution, Siloz avoids potential overheads of
managing a large number of nodes by identifying scenarios
in which it is unnecessary to iterate over guest-reserved
nodes, especially while holding locks. For instance, a guest-
reserved node’s free memory statistics do not change after
VM boot and thus do not require periodic updates [142].

When a VM is shutdown/killed, its backing host memory
is freed to the corresponding (logical) nodes’ free pools per
existing Linux semantics. However, the nodes’ reservation
remains valid until its encompassing control group is de-
stroyed/modified by a privileged user. We note that there is
no modification to host shutdown: the privileged shutdown
routine is free to kill any process and its resources, ignoring
otherwise active subarray group/logical NUMA constraints.

5.4 Extended Page Table (EPT) Integrity
EPTs pose a distinct challenge to subarray group isolation.
Because EPTs define the host physical addresses that a VM
may access (§2.1), Siloz relies on EPT integrity to enforce
subarray group isolation. Thus, unlike other VM data, Siloz’s
goal of per-VM Rowhammer isolation requires protection of
a VM’s own EPTs, not just inter-VM isolation; EPT bit flips
must be prevented or detected-upon-use (integrity-checked).

Hardware-Based Protection. Emerging Intel and AMD
servers support secure EPT [54], referred to as secure nested
paging (SNP) by AMD [3]. With secure EPT, hardware per-
forms mapping integrity checks for EPT entries denoted
as “secure”, supplementing Siloz’s subarray group isolation;
the host (e.g., Siloz) selects free pages to be used for secure
EPTs, while the TDX module/hardware encrypts and in-
tegrity checks these pages [20, 53]. While integrity checks
only detect—not prevent—EPT corruption, they eliminate
the key security threat of EPT bit flips: software cannot use a
corrupted EPT to escape subarray group isolation. Nonethe-
less, depending on how system firmware handles failed TDX
integrity checks, a VM may still cause denial-of-service via
EPT bit flips; failed SGX checks yield processor lockups [58].

Software-Based Protection. To also provide availability
guarantees and support hardware without secure EPT, an
alternate solution is needed. Here, Siloz exploits the insight
that EPTs occupy a small portion of DRAM (< 0.001% in de-
ployment conditions described shortly), lending themselves
to protection via guard rows that prevent bit flips (§3).

A basic guard row scheme would reserve an entire subar-
ray group for EPTs, placing 𝑛 guard rows between each EPT
row. However, via insights about server DRAM addressing
and VM deployment, Siloz can minimize the required DRAM.
In particular, all EPTs can fit into a single row group per

socket on Siloz’s major cloud provider-based server configu-
ration due to several deployment conditions. First, because
cloud providers do not typically share pages among tenants
for security [92, 140, 151], the number of EPTs is bounded;
each host page is mapped in at most one EPT. Second, allo-
cating VMs in contiguous physical memory regions—made
feasible by (a) each subarray group’s contiguity [175], and
(b) static guest memory allocation done for performance [92,
140, 151]—further reduces EPT counts; each last-level EPT
can map 512 of the VM’s contiguous pages [141]. Third,
backing guests with 2 MiB huge pages—again for perfor-
mance [92, 140, 151]—reduces EPTs by a factor of 512 [141].
In this environment (deployed by multiple major cloud

providers [92, 140, 151]), the 512 entries in each last-level
EPT page cumulatively map approximately 1 GiB of DRAM,
with higher-level EPT pages providing a negligible (≈ 1/512)
increase in the total number of EPT pages. Since each bank is
1 GiB, and a single 8 KiB row in a bank holds two EPT pages,
one row group per socket is sufficient to store all EPTs.

Thus, rather than allocating an entire subarray group for
EPTs, Siloz reserves a contiguous block of 𝑏 row groups in a
designated subarray group. One row group at offset 𝑜 in the
block serves as the EPT row group, while the other 𝑏 − 1 row
groups serve as guard rows (roughly split above and below
the EPT row group). The host or a VM can accordingly safely
use remaining (non-reserved) rows in the subarray group.
In our implementation, Siloz specifically uses 𝑏 = 32 and

𝑜 = 12, which reserves just ≈ 0.024% of DRAM for the
combination of EPTs and guard rows. At a high level, the
specific choices of 𝑏 = 32 and 𝑜 = 12 ensure that an EPT
row has a sufficient number on guard rows on both sides to
prevent bit flips, in spite of potential DIMM-internal half-row
(§2.3) remaps affecting adjacency within 32-aligned blocks.
We defer more detailed discussion of such remaps to §6.

To allocate EPTs from appropriate row groups, Siloz instru-
ments the host KVM module’s kmalloc() calls for EPT pages
with a new GFP_EPT flag (get free page EPT). Siloz uses
this flag in conjunction with the corresponding VM’s con-
trol group to choose a row group block (implemented, like a
subarray group, as a logical NUMA node) for the allocation.

To prevent guard row use, Siloz offlines pages mapping to
guard rows during system initialization. This behavior ex-
tends Linux’s system for offlining faulty memory pages [15].

423



6 Handling Media-to-Internal Mappings
Thus far, we have discussed DRAM row addressing and sub-
array group isolation in the context of media addresses (via
which memory controllers access DRAM, §2.4). However,
it is important to consider potential differences in a server
DIMM’s internal mapping of media addresses, such that rows
are isolated to expected subarrays. Thus, Siloz accounts for
various potential sources of row remaps in server DIMMs.

Row Repairs. DRAM vendors and cloud vendors can
“repair” defective rows by remapping them to spare internal
rows that are allocated during manufacturing [4, 21, 51, 52,
61, 63, 75, 75]. Notably, a row’s remapped internal address is
left up to the DRAM vendor and not exposed to the memory
controller, which continues to use the same media address.
Such repairs pose a threat to subarray group isolation if
they are inter-subarray, wherein a defective row could be
remapped to a spare row in a different subarray group [70].

While our experiments (§7.1) have not yielded evidence of
inter-subarray repairs (e.g., many/all repairs may use intra-
subarray spare rows), Siloz can still mitigate the threat of
inter-subarray repairs. In the worst-case that a DIMM only
uses inter-subarray repairs, the pages mapping to these rows
can be identified via address translation drivers and removed
from allocatable memory to preserve isolation, as can be
done for failing memory pages [15]. We note that only a
small portion of rows (e.g., 0.15% [24]) have been observed
to be remapped due to row repairs in server DIMMs, meaning
little memory capacity would be lost with such a mitigation.

Vendor-SpecificAddress Scrambling.A subset ofmajor
DRAM vendors perform row address scrambling [24], trans-
forming bits 𝑏1 and 𝑏2 of the row media address (where 𝑏0 is
the least significant bit) by XOR-ing each with 𝑏3. While row
scrambling can thus affect the internal ordering of a group
of 8 rows (bit range [𝑏0, 𝑏2] encodes 8 rows, where 𝑏1 and 𝑏2
are potentially transformed), it does not affect the internal
contiguity of these 8 rows; higher-order bits are unchanged.

Thus, for any DIMM whose subarray size is a multiple of
8 rows, there is no impact. In any remaining DIMMs, Siloz
can remove pages mapping to the 8-row range potentially
violating isolation at each subarray boundary from allocat-
able memory (similar to any inter-subarray repaired rows).
For non-multiple-of-8 subarray sizes in the range (512, 2048),
this would impact between ≈ 1.56% and ≈ 0.39% of DRAM,
respectively (linearly-decreasing with larger subarray sizes).

StandardizedAddressMirroring and Inversion.DDR4
specifies [62] two other forms of row address transforma-
tions for a specific subset of signals: mirroring (for easier
signal routing) and inversion (for improved signal integrity).
Because both have similar ramifications for Siloz, we first
describe each transformation as depicted in Table 1, before
detailing how Siloz accounts for them. Again given a modern
subarray size of 512–2048 rows [155], we consider transfor-
mations of row address bits in the range [𝑏0, 𝑏10] (encoding

Bit Even Rank Odd Rank
A-side B-side A-side B-side

𝑏0 𝑏0 𝑏0 𝑏0 𝑏0
𝑏1 𝑏1 𝑏1 𝑏1 𝑏1
𝑏2 𝑏2 𝑏2 𝑏2 𝑏2
𝑏3 𝑏3 ! 𝑏3 𝑏4 ! 𝑏4
𝑏4 𝑏4 ! 𝑏4 𝑏3 ! 𝑏3
𝑏5 𝑏5 ! 𝑏5 𝑏6 ! 𝑏6
𝑏6 𝑏6 ! 𝑏6 𝑏5 ! 𝑏5
𝑏7 𝑏7 ! 𝑏7 𝑏8 ! 𝑏8
𝑏8 𝑏8 ! 𝑏8 𝑏7 ! 𝑏7
𝑏9 𝑏9 ! 𝑏9 𝑏9 ! 𝑏9
𝑏10 𝑏10 𝑏10 𝑏10 𝑏10

Table 1.DDR4 address mirroring and inversion [62] of lower-
order rowmedia address bits as a function of DIMM rank and
“side” (half). Odd-rank addresses are mirrored (red+orange).
B-side addresses are inverted (yellow+orange). Lightened
colors denote transformed bits. “!” denotes boolean NOT.

up to 2048 rows). Notably, transformations of [𝑏0, 𝑏10] and
higher-order bits are mutually-independent in DDR4 [62].

In address mirroring, select address bit pairs are mirrored
(swapped) in odd ranks (red+orange columns in Table 1),
while unmodified in even ranks (white+yellow). Specifically,
bit pairs <𝑏3, 𝑏4>, <𝑏5, 𝑏6>, and <𝑏7, 𝑏8> are each mirrored on
odd ranks (e.g., 0b10000—𝑏4 = 1, 𝑏3 = 0—becomes 0b01000).
To understand address inversion, recall that each row is

internally-split into two half-rows: the A-side and B-side
half-rows (§2.3). Bits [𝑏3, 𝑏9] are inverted in B-side half-rows
(yellow+orange), but not in A-side half-rows (white+red).

As with row address scrambling, inversion and mirroring
pose a challenge to subarray group isolation only for certain
subarray sizes. In particular, if the subarray size is a power-
of-2 in the commodity range of 512–2048 rows, inversion
and mirroring have no effect on subarray group isolation;
for instance, the major vendor’s DIMMs in Siloz’s evaluation
server are unaffected, given their 1024-row subarrays (§4).

For intuition on why power-of-2 sizes work so well, note
that the𝑛 least-significant bits of a rowmedia address encode
the exact number of rows in a subarray of size 2𝑛 . Given sizes
of 512 (𝑛 = 9, [𝑏0, 𝑏8]), 1024 (𝑛 = 10, [𝑏0, 𝑏9]), and 2048 rows
(𝑛 = 11, [𝑏0, 𝑏10]), it is clear from Table 1 that these subarray
size-aligned bit ranges are only transformed to different
offsets within the same subarray, maintaining isolation.

For remaining potential subarray sizes in the commodity
range—where inversion and mirroring can cause pages to be
split across subarray boundaries—Siloz can still provide sub-
array group isolation by forming “artificial” subarray groups.
In particular, Siloz can round the subarray size up to the near-
est power-of-2, such that the rows in an artificial subarray
group maintain the DIMM-internal contiguity property.

Because these artificial boundaries would not always align
with true subarray boundaries that provide natural isolation,
Siloz can instead enforce isolation across artificial bounds by
adding 𝑛 guard rows at the start of each artificial subarray,
where 𝑛 = 4 protects against bit flips observed on modern

424



Parameter Value
Host Machine Dual-socket Intel Xeon Gold 6230 CPU@ 2.1 GHz; per-socket:

40 logical cores, 192 GiB DDR4 DRAM (32 GiB 2Rx4 DIMMs
@ 2933 MHz, 192 total banks, 1024 8 KiB rows per subarray)

Host OS+Kernel Ubuntu 22.04+Linux/KVM 5.15 (generic configuration)
Guest OS+Kernel Ubuntu 22.04+Linux 5.15 (generic configuration)

Table 2. Baseline system configuration. The host kernel is
varied among the unmodified Linux/KVM baseline and Siloz.

server DIMMs [24, 87, 129]. Accounting for mappings on
different ranks and sides, this would reserve between≈ 1.56%
and ≈ 0.39% of DRAM (again linearly-decreasing with larger
subarray sizes). We note that this reservation would be in
place of any potential reservations for address scrambling,
since the artificial subarray size would be a multiple of 8.

Key Takeaways. While commodity power-of-2 subarray
sizes integrate most easily, Siloz can support other potential
subarray sizes by removing the small fraction of pages vio-
lating isolation from allocatable memory. Nonetheless, the
aforementioned challenges highlight the benefit of hardware-
software co-design in DRAM systems [80, 114], especially
for subarray group isolation. For instance, these challenges
could be overcome by exposing isolation domains such as
subarray groups in the DRAM interface, providing architec-
tural guarantees to facilitate Siloz’s widespread adoption.

7 Evaluation
We evaluate Siloz against a Linux/KVM [82] 5.15 (Ubuntu
22.04 LTS) baseline hypervisor on a major cloud provider-
based Intel Skylake server configuration. Unless noted, we
use default BIOS settings. Given 192 banks per socket (i.e.,
physical node) and 1024 8 KiB rows per subarray, Siloz man-
ages a subarray group size of 192 ∗ 1024 ∗ 8 KiB = 1.5 GiB by
default. We evaluate the effects of instead managing subar-
ray sizes of 512 and 2048 rows (the lower and upper limits of
modern subarray sizes [155]) in §7.4 and distinguish these
variants as Siloz-512, Siloz-1024 (default), and Siloz-2048. All
Siloz variants protect EPTs via guard rows (§5.4). We use the
same generic kernel configuration and boot parameters for
the baseline and Siloz. Table 2 lists our system configuration.
To evaluate Siloz’s security, we run an extended version

of the Blacksmith [59] Rowhammer fuzzer to flip bits.
To evaluate Siloz’s effect on execution time, we run re-

dis+YCSB [14, 26] and terasort fromHadoop [118] in line with
related work [40]. We also run the SPEC CPU 2017 and PAR-
SEC 3.0 benchmark suites used in related work [40, 84, 173].
To evaluate throughput, we run memcached [67], Sys-

BenchmySQL [85], and IntelMemory Latency Checker (MLC)
[152], which measures throughput via performance counters.

We run performance benchmarks in an unmodifiedUbuntu
22.04 VM using KVM [82] acceleration with QEMU [8] v6.2.0
(i.e., Ubuntu 22.04’s version). Select mmap() calls are modi-
fied to request memory from guest-reserved nodes (§5.3).

Observed Bit Flips? DIMM
A B C D E F

Inside Subarray Group yes yes yes yes yes yes
Outside Subarray Group NO NO NO NO NO NO

Table 3. Siloz’s contains bit flips to a hammering domain’s
subarray group (§7.1), preventing inter-VM hammering.

VMs are provisioned with all 40 logical cores from socket
0 and 4 GiB of DRAM per logical core (160 GiB total). Multi-
threaded workloads are executed with a thread per logical
core (40 total), except for PARSEC workloads, which require
a power-of-2 number of threads and are thus executed with
32 threads. Guest memory is statically allocated, pinned, not
oversubscribed, and backed by 2 MiB host huge pages, as
done by multiple major cloud providers [92, 140, 151].

7.1 Security
We assess two aspects of Siloz’s security. First, we determine
whether Siloz can contain hammering to a domain’s exclusive
subarray group(s)—or alternatively put, whether Siloz can
eliminate inter-VM bit flips. Second, we determine whether
Siloz can prevent bit flips in designated rows (e.g., EPT rows).

We generate bit flips in the baseline system using a mod-
ified version of Blacksmith [59] Rowhammer fuzzer (i.e., a
fuzzer that attempts to find hammering patterns that induce
bit flips despite state-of-the-art hardware mitigations), which
we have extended to support server DIMMs. We then com-
pare Blacksmith’s effectiveness when running under Siloz.

Hammering Containment.We first pin Blacksmith to a
Siloz subarray group in Siloz, where we only detect bit flips
in the group, as expected. We left the system running for
24 hours, such that ECC patrol scrubbing would catch any
potentially-undetected bit flips. While we observed bit flips
in all of the socket’s DIMMs (and across ranks and banks
in the DIMMs), none of the bit flips occurred outside of the
subarray group (Table 3). Thus, we confirm Siloz’s ability to
contain hammering to provisioned subarray groups.

EPT Bit Flip Prevention. To assess Siloz’s ability to pre-
vent bit flips in designated rows (e.g., EPT rows), we run
Blacksmith with disjoint (a) groups of 32 consecutive logi-
cal rows protected according to Siloz’s mitigation, and (b)
other groups of 32 rows unprotected in the same subarray
group. As expected, we do not observe bit flips in the pro-
tected rows, while we do observe bit flips in the unprotected
rows. We also note that all bit flips observed during our ham-
mering containment tests were in non-EPT rows. Thus, we
demonstrate Siloz’s efficacy in preventing EPT bit flips.

7.2 Execution Time
We evaluate Siloz’s effect on execution time against redis+
YCSB, Hadoop terasort, and the SPEC CPU 2017 (SPECspeed)
and PARSEC 3.0 benchmark suites. We include all six YCSB

425



Figure 4. Baseline-normalized execution time (§7.2) for Siloz.
Error bars depict 95% confidence intervals. Lower is better.

core workloads A–F. We omit PARSEC’s supplemental net-
work benchmarks due to occasional deadlock in the bench-
marks on all kernels (i.e., including the unmodified baseline).
As shown in Fig. 4, we find that Siloz’s geometric mean

timing shows < 0.5% difference from baseline timing, demon-
strating Siloz’s negligible effect on execution time. Because
Siloz only affects the location of boot-time allocations for
each VM, one would not expect significant runtime effects,
consistent with our results. Nonetheless, we consider poten-
tial sources of varied execution time for completeness.
Beyond the noise present in each benchmark, potential

sources of execution time improvement for Siloz stem from
Siloz’s relatively-stringent NUMA locality enforcement. For
instance, we found that when running redis-B in a slightly-
modified baseline (i.e., onlywith Siloz’s constraints on EPT al-
locations), performance slightly improved. We note that bet-
ter NUMA locality for EPTs is being reviewed in Linux [137].
Potential sources of execution time worsening for Siloz

stem from Siloz’s iteration over more (logical) NUMA nodes
than the baseline, especially in I/O-bound workloads where
the host is more active. However, Siloz’s subarray size sensi-
tivity results (§7.4) indicate that noise is a more likely culprit.

7.3 Throughput
We measure Siloz’s effects on memory throughput using
memcached, Sysbench mySQL, and Intel MLC. MLC work-
loads are differentiated by all reads (mlc-reads), read:write
ratios (mlc-3:1, mlc-2:1, and mlc-1:1), and a STREAM triad-
like benchmark [108] (mlc-stream). As shown in Fig. 5, Siloz
yields < 0.5% difference from baseline mean throughput.

Factors affecting throughput are similar to those affecting
execution time (i.e., Siloz’s more stringent NUMA enforce-
ment and management of more nodes). Additionally, both

Figure 5. Baseline-normalized throughput (§7.3) for Siloz.
Error bars depict 95% confidence intervals. Lower is better.

bandwidth and execution time can be affected by address-
dependent cache slice/set indexing functions [57, 107, 168];
specific addresses vary between the baseline and Siloz due
to Siloz’s subarray group address range constraints. How-
ever, because Siloz still manages contiguous regions much
larger than those of commonly-optimized access patterns, it
is unsurprising that there is no clear performance difference.
Given that mean bandwidth and execution time are well-
within the confidence intervals of individual benchmarks,
we conclude that Siloz’s mean differences are insignificant.

7.4 Subarray Size Sensitivity
While we are unaware of modern server DIMMs using the
lower bound (512 rows) and upper bound (2048 rows) for con-
ventional modern subarray sizes [155], we can nonetheless
measure Siloz sensitivity to such sizes by modifying Siloz’s
presumed subarray size (passed as a boot parameter, §5.3).
In particular, because DDR standard access timings do

not vary across subarrays [60], and varying subarray sizes
does not change the degree of bank-level parallelism avail-
able to each subarray group (§4), we can measure Siloz’s
performance on “artificial” subarray groups without loss of
accuracy. We note that such artificial groups do not work for
evaluating security without additional considerations (§6)
because isolation properties do change across subarrays.

For clarity, we refer to the “original” Siloz variant run on
our evaluation’s server as Siloz-1024 (since the true subarray
size is 1024 rows), and compare it to variants Siloz-512 and
Siloz-2048. Notably, Siloz-512’s smaller subarray group sizes
means twice as many logical NUMA nodes as Siloz-1024
are needed to represent the correspondingly-larger number
of subarray groups. Likewise, Siloz-2048’s larger subarray
group sizes require half as many nodes as Siloz-1024.

426



Figure 6. Siloz-1024-normalized execution time when vary-
ing from 512 to 2048 row groups per subarray group (§7.4).
Error bars depict 95% confidence intervals. Lower is better.

As shown in Fig. 6 (execution time) and Fig. 7 (throughput),
we find < 0.5% geometric mean overheads for the perfor-
mance of Siloz-512 and Siloz-2048 when normalized to that
of Siloz-1024. The fact that there are no clear trends (nor
significant differences) in mean timing and bandwidth as a
function of subarray size is expected, given that subarray size
does not effect DDR access times nor bank-level parallelism.

Furthermore, the lack of a trend is further indicative that
the number of NUMAnodes does not play a significant role in
performance, and that the most likely source of performance
differences is simply noise. In particular, if NUMA node
iterations played a significant role, onewould expect the Siloz
variant with the fewest nodes (Siloz-2048) to outperform the
one with most nodes (Siloz-512), which is not the case.

8 Discussion
8.1 Memory Fragmentation
VMs (especially micro-VMs [1, 156]) may have finer-grained
DRAM demands than Siloz’s subarray group size for a given
server configuration. Thus, provisioning an entire subarray
group for relatively small needs (e.g., a 1.5 GiB subarray
group to a VM needing 512 MiB) risks wasting significant
DRAM. The severity of potential fragmentation thus depends
on differences between subarray group sizes and granularity
of guest DRAM provisioning; multiple major cloud providers
offer VM sizing at similar granularity to Siloz [110, 140].
More importantly, potential sizing mismatches are not

inherent to the subarray group primitive, instead arising
from memory controllers’ selected DRAM address map. To-
day’s sub-NUMA clustering mapping option [111] can re-
duce group sizes by 50% to support finer-grained provision-
ing; the size linearly decreases with the number of banks
touched per page (§4.1). In future systems, greater control

Figure 7. Siloz-1024-normalized throughput timewhen vary-
ing from 512 to 2048 row groups per subarray group (§7.4).
Error bars depict 95% confidence intervals. Lower is better.

over physical-to-media address mappings [16, 97] could al-
low Siloz to tailor subarray group sizes to specific VM classes.

8.2 Considerations for Other DRAM Technologies
While today’s DDR4 DRAM is widely-deployed, DDR5 and
HBM2 DRAM are increasingly-deployed in servers and re-
main vulnerable to Rowhammer [78, 119]. We thus discuss
how differences in DDR5 and HBM2 could impact Siloz.
First, memory controllers may use different physical-to-

media addressmappings for suchmodules, requiring updated
versions of Siloz’s drivers for DDR4 DIMMs [48, 56]. Second,
DDR5 and HBM2 can provide greater bank-level parallelism
than DDR4 by increasing the number of banks per rank (and
hence, per physical node). Thus, the upper bound of Siloz’s
subarray group sizes could proportionally increase in these
geometries, yielding coarser-grained memory management
(which can be offset using techniques described in §8.1).

In addition to these effects, DDR5 actually eases subarray
group isolation for non-power-of-2 subarray sizes. Specifi-
cally, DDR5 stipulates that any DIMM-internal address mir-
roring and inversion (§6) must be undone upon arriving at
each DRAM device [64], potentially to ease reasoning about
DRAM faults/errors. Thus, Siloz would not have to create
artificial subarray groups for non-power-of-2 subarray sizes
in DDR5, as all devices use the same internal addresses.

8.3 Alternate EPT Protection
While Siloz provides EPT integrity using guard rows or
emerging hardware extensions [3, 54], we emphasize that a
variety of EPT bit flip mitigations can help to enforce Siloz’s
subarray group isolation. For instance, a state-of-the-art
SoftTRR-like [173] software refresh routine could periodically
refresh EPT rows to protect their values against bit flips.

427



We chose to use guard rows instead of a software refresh
routine because of the difficulty of providing real-time guar-
antees in the Linux kernel [104], especially in many-core,
generic production environments. We found that scheduling
a software refresh routine to run every 1 ms (as would be re-
quired to protect EPT rows via periodic refresh [173]) did not
consistently meet 1 ms deadlines between refreshes. Rather,
we observed a minimum of 1 ms between software refreshes
due to Linux scheduling semantics [146], even observing a
period greater than 32 ms (over 32 times a safe period).
To avoid scheduling delays, we instead ran the refresh

routine immediately upon receipt of a periodic timer tick
interrupt (i.e., during the interrupt request, rather than as its
own task). Notably, this experimental design could interfere
with other real-time scheduling, providing a clear drawback.

We also found that we had to deactivate Linux optimiza-
tions that disable the timer tick on idle cores for power
and performance savings [2, 132, 138, 158]. Despite these
changes, we found that the tick interrupts could still be de-
layed or dropped for various reasons, such as interrupts being
disabled. These delayed/dropped tick interrupts resulted in
missed refresh deadlines, leaving EPTs vulnerable to bit flips
even in the presence of redundant ticks, tick skew [47] across
cores, and performance-costly real-time kernel patches.

8.4 Broader Applicability to DRAM Isolation
Siloz uses logical NUMA nodes to manage subarray groups
for Rowhammer isolation; however, cloud providers could
use logical NUMA nodes to manage other units of DRAM iso-
lation (e.g., banks, ranks, channels, or memory controllers).
These units of isolation are attractive in that they could pro-
vide VMs with security isolation against additional DRAM
timing [122] and power [22] side channels, as well as perfor-
mance isolation (e.g., memory controller scheduling [112]).

The key challenge to extending Siloz’s abstractions beyond
subarray groups is the compatibility of physical-to-media
address mappings. Given mappings that interleave a memory
page across a physical node’s banks (§2.4), these forms of
isolation are not feasible in default configurations. However,
extended addressing control (§8.1) could enable Siloz’s ap-
plication to these units, allowing cloud providers to offer a
richer set of isolation options. Alternatively, modifying fu-
ture DRAM to support subarray-level parallelism [80] could
allow subarray groups themselves to offer such properties.

9 Related Work
Rowhammer attacks/analyses. Rowhammer bit flips were
publicized in 2014 [79], spurring various attacks and analyses
[22–25, 28, 34, 37, 42, 43, 46, 58, 59, 65, 74, 79, 79, 83, 83, 86,
93, 98, 113, 115–117, 119, 120, 123, 125, 129, 133, 144, 145, 149,
150, 163, 165, 172], including the related RowPress phenom-
enon [101]. These works motivate Siloz’s subarray-based
approach to DRAM isolation, especially given increasing
susceptibility to ACT-induced disturbances inside subarrays.

Rowhammermitigations. Beyond deployed-but-vulner-
able mitigations (§2.5), other hardware and software mitiga-
tions offer a range of security-performance trade-offs and are
not known to be deployed [5, 6, 9, 11, 12, 17, 31, 35, 36, 39, 41,
44, 45, 50, 66, 68, 74, 76–79, 84, 89, 91, 94, 96, 98, 105, 106, 121,
124, 128, 130, 131, 150, 155, 159–161, 164, 167, 169, 174, 176].
Of these, we analyze mitigations most-related to Siloz in §3.

Siloz efficiently prevents inter-VM hammering. However,
unlike numerous mitigations, Siloz only provides inter-VM
protection and not intra-VM protection. In fact, Siloz can
increase intra-VM subarray co-location, potentially simplify-
ing intra-VM Rowhammer. Given inter-VM versus intra-VM
exploit severity, we consider this trade-off to be acceptable.

Other DRAM Side Channels. DRAMA [122] shows that
DRAM accesses can leak information through timing side
channels, such as bank conflicts. HammerScope [22] shows
similar leakage through power side channels. Proposed mit-
igations [29, 136, 154, 177] are largely-based on avoiding
simultaneous contention for a DRAM resource (e.g., a bank).
Combining these mitigations with Siloz’s inter-VM Rowham-
mer protection is a potential avenue for future work.
Subarrays. mFIT [24] shows that Rowhammer is inef-

fective across subarrays, as asserted in prior work [96, 164].
X-ray [117] infers subarray structure in select DDR4 and
HBM2 modules. Siloz builds on these insights to mitigate
inter-VM hammering via subarray group isolation. Other
work proposes using subarrays for in-DRAM data move-
ment [18, 155] and implementing subarray-level parallelism
for DRAM activations [80] and refreshes [166], performance
optimizations from which Siloz-isolated VMs may benefit.

10 Conclusion
In this work, we have presented Siloz, a hypervisor that
brings DRAM isolation domains to the cloud via subarray
groups. Siloz provides VMs with comprehensive protection
against inter-VM hammering at negligible performance im-
pact. While today’s DRAM standards only allow subarray
groups to be used for security, our findings motivate rethink-
ing DRAM addressing’s role in both security and perfor-
mance isolation and considering subarrays for such isolation.
We hope that Siloz’s effectiveness and practicality spur fur-
ther development of such DRAM isolation domains.

Acknowledgments
We thank the anonymous reviewers for their constructive
feedback and Ishwar Agarwal, Daniel Berger, Tanj Bennett,
Lucian Cojocar, Tim Cowles, Brett Dodds, Dan Ernst, Todd
Farrell, Adam Grenzebach, Terry Grunzke, Mark Hill, Lisa
Hsu, Ingab Kang, Todd Merritt, Onur Mutlu, and Kaiyang
Zhao for helpful discussion. This work was supported by
an ONR Expeditionary Cyber grant, NSF CNS-2239311, and
CCF-2217016. Kevin Loughlinwas supported by anNSFGrad-
uate Research Fellowship and a Google PhD Fellowship.

428



References
[1] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony

Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. Fire-
cracker: Lightweight Virtualization for Serverless Applications. In
USENIX Symposium on Networked Systems Design and Implementation
(NSDI), 2020.

[2] Abdullah Aljuhni, C Edward Chow, Amer Aljaedi, Shaji Yusuf, and
Francisco Torres-Reyes. Towards Understanding Application Perfor-
mance and System Behavior with the Full Dynticks Feature. In IEEE
Computing and Communication Workshop and Conference (CCWC),
2018.

[3] AMD. AMD Secure Encrypted Virtualization (SEV), 2020. https:
//developer.amd.com/sev/.

[4] Rakesh Anigundi, Hongbin Sun, Jian-Qiang Lu, Ken Rose, and Tong
Zhang. Architecture Design Exploration of Three-Dimensional (3D)
Integrated DRAM. In International Symposium on Quality Electronic
Design, 2009.

[5] Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek, Rui Qiao, Reetu-
parna Das, Matthew Hicks, Yossi Oren, and Todd Austin. ANVIL:
Software-Based Protection Against Next-Generation Rowhammer
Attacks. In ACM SIGARCH Computer Architecture News (CAN), 2016.

[6] Kuljit Bains, John Halbert, Christopher Mozak, Theodore Schoenborn,
and Zvika Greenfield. Row Hammer Refresh Command, 2015. US
Patent 9,117,544.

[7] Majed Valad Beigi, Yi Cao, Sudhanva Gurumurthi, Charles Recchia,
Andrew Walton, and Vilas Sridharan. A Systematic Study of DDR4
DRAM Faults in the Field. In IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2023.

[8] Fabrice Bellard. QEMU, a Fast and Portable Dynamic Translator. In
USENIX Annual Technical Conference (ATC), 2005.

[9] Tanj Bennett, Stefan Saroiu, AlecWolman, and Lucian Cojocar. Panop-
ticon: A Complete In-DRAM Rowhammer Mitigation. InWorkshop
on DRAM Security (DRAMSec), 2021.

[10] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li.
The PARSEC Benchmark Suite: Characterization and Architectural
Implications. In IEEE International Conference on Parallel Architectures
and Compilation Techniques (PACT), 2008.

[11] Carsten Bock, Ferdinand Brasser, David Gens, Christopher Liebchen,
and Ahamd-Reza Sadeghi. RIP-RH: Preventing Rowhammer-Based
Inter-Process Attacks. In ACM Asia Conference on Computer and
Communications Security (Asia CCS), 2019.

[12] Ferdinand Brasser, Lucas Davi, David Gens, Christopher Liebchen,
and Ahmad-Reza Sadeghi. CAn’t Touch This: Software-only Miti-
gation against Rowhammer Attacks targeting Kernel Memory. In
USENIX Security Symposium (USENIX Security), 2017.

[13] James Bucek, Klaus-Dieter Lange, and Jóakim v. Kistowski. SPEC
CPU2017: Next-Generation Compute Benchmark. In Companion of
the 2018 ACM/SPEC International Conference on Performance Engi-
neering, 2018.

[14] Josiah Carlson. Redis in Action. Simon and Schuster, 2013.
[15] Michael Andrew Carlton, Sean P Blanchard, and Nathan A De-

bardeleben. Improving Memory Error Handling Using Linux. Tech-
nical report, Los Alamos National Lab., 2014.

[16] J. Carter, W. Hsieh, L. Stoller, M. Swanson, Lixin Zhang, E. Brunvand,
A. Davis, Chen-Chi Kuo, R. Kuramkote, M. Parker, L. Schaelicke, and
T. Tateyama. Impulse: Building a Smarter Memory Controller. In IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 1999.

[17] Anirban Chakraborty, Manaar Alam, and Debdeep Mukhopadhyay.
Deep Learning Based Diagnostics for Rowhammer Protection of
DRAM Chips. In IEEE Asian Test Symposium (ATS), 2019.

[18] Kevin K Chang, Prashant J Nair, Donghyuk Lee, Saugata Ghose, Moin-
uddin K Qureshi, and Onur Mutlu. Low-Cost Inter-Linked Subarrays
(LISA): Enabling Fast Inter-Subarray Data Movement in DRAM. In

IEEE International Symposium on High Performance Computer Archi-
tecture (HPCA), 2016.

[19] Kevin Kai-Wei Chang, Donghyuk Lee, Zeshan Chishti, Alaa R
Alameldeen, Chris Wilkerson, Yoongu Kim, and Onur Mutlu. Improv-
ing DRAM Performance by Parallelizing Refreshes with Accesses. In
IEEE International Symposium on High Performance Computer Archi-
tecture (HPCA), 2014.

[20] Pau-Chen Cheng, Wojciech Ozga, Enriquillo Valdez, Salman Ahmed,
Zhongshu Gu, Hani Jamjoom, Hubertus Franke, and James Bottom-
ley. Intel TDX Demystified: A Top-Down Approach. arXiv preprint
arXiv:2303.15540, 2023.

[21] Keewon Cho, Wooheon Kang, Hyungjun Cho, Changwook Lee, and
Sungho Kang. A Survey of Repair Analysis Algorithms for Memories.
ACM Computing Surveys (CSUR), 2016.

[22] Yaakov Cohen, Kevin Sam Tharayil, Arie Haenel, Daniel Genkin,
Angelos D Keromytis, Yossi Oren, and Yuval Yarom. HammerScope:
Observing DRAM Power Consumption Using Rowhammer. In ACM
SIGSAC Conference on Computer and Communications Security (CCS),
2022.

[23] Lucian Cojocar, Jeremie Kim, Minesh Patel, Lillian Tsai, Stefan Saroiu,
Alec Wolman, and Onur Mutlu. Are We Susceptible to Rowhammer?
An End-to-EndMethodology for Cloud Providers. In IEEE Symposium
on Security and Privacy (S&P), 2020.

[24] Lucian Cojocar, Kevin Loughlin, Stefan Saroiu, Baris Kasikci, and
Alec Wolman. mFIT: A Bump-in-the-Wire Tool for Plug-and-Play
Analysis of Rowhammer Susceptibility Factors. Microsoft Tech Report,
2021.

[25] Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, and Herbert Bos.
Exploiting Correcting Codes: On the Effectiveness of ECC Memory
Against Rowhammer Attacks. In IEEE Symposium on Security and
Privacy (S&P), 2019.

[26] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. Benchmarking Cloud Serving Systems with YCSB.
In ACM symposium on Cloud computing, 2010.

[27] Victor Costan and Srinivas Devadas. Intel SGX Explained. Cryptology
ePrint Archive, 2016.

[28] Finn de Ridder, Pietro Frigo, Emanuele Vannacci, Herbert Bos, Cris-
tianoGiuffrida, and Kaveh Razavi. SMASH: SynchronizedMany-sided
Rowhammer Attacks from JavaScript. In USENIX Security Symposium
(USENIX Security), 2021.

[29] Peter W Deutsch, Yuheng Yang, Thomas Bourgeat, Jules Drean, Joel S
Emer, and Mengjia Yan. DAGguise: Mitigating Memory Timing Side
Channels. In International Conference on Architectural Support for
Programming Languages and Operating Systems, 2022.

[30] The QEMU Project Developers. The Memory API.
qemu.readthedocs.io/en/latest/devel/memory.html, 2022.

[31] Andrea Di Dio, Koen Koning, Herbert Bos, and Cristiano Giuffrida.
Copy-on-Flip: Hardening ECCMemory Against Rowhammer Attacks.
In Network and Distributed System Security (NDSS) Symposium, 2023.

[32] Yaozu Dong, Xiaowei Yang, Jianhui Li, Guangdeng Liao, Kun Tian,
and Haibing Guan. High Performance Network Virtualization with
SR-IOV. Journal of Parallel and Distributed Computing, 2012.

[33] Chris Down. 5 Years of Cgroup v2: The Future of Linux Resource
Control. USENIX Large Installation System Administration Conference,
2021.

[34] Michael Fahr, Hunter Kippen, Andrew Kwong, Thinh Dang, Jacob
Lichtinger, Dana Dachman-Soled, Daniel Genkin, Alexander Nelson,
Ray Perlner, Arkady Yerukhimovich, and Daniel Apon. When Frodo
Flips: End-to-End Key Recovery on FrodoKEM via Rowhammer. In
ACM SIGSAC conference on computer and communications security
(CCS), 2022.

[35] Ali Fakhrzadehgan, Yale N Patt, Prashant J Nair, and Moinuddin K
Qureshi. SafeGuard: Reducing the Security Risk from Row-Hammer
via Low-Cost Integrity Protection. In IEEE International Symposium
on High Performance Computer Architecture (HPCA), 2022.

429



[36] Ali Fakhrzadehgan, Prakash Ramrakhyani, Moinuddin K Qureshi,
and Mattan Erez. SecDDR: Enabling Low-Cost Secure Memories by
Protecting the DDR Interface. arXiv preprint arXiv:2209.00685, 2022.

[37] Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der Veen,
Onur Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi.
TRRespass: Exploiting the Many Sides of Target Row Refresh. In IEEE
Symposium on Security and Privacy (S&P), 2020.

[38] Varun Gandhi and James Mickens. Rethinking Isolation Mechanisms
for Datacenter Multitenancy. In USENIX Workshop on Hot Topics in
Cloud Computing (HotCloud 20), 2020.

[39] Mohsen Ghasempour, Mikel Lujan, and Jim Garside. Armor: A Run-
Time Memory Hot-Row Detector, 2015.

[40] Saugata Ghose, Tianshi Li, Nastaran Hajinazar, Damla Senol Cali, and
Onur Mutlu. Demystifying Complex Workload-DRAM Interactions:
An Experimental Study. In ACM on Measurement and Analysis of
Computing Systems (POMACS), 2019.

[41] Hector Gomez, Andres Amaya, and Elkim Roa. DRAM Row-Hammer
Attack Reduction Using Dummy Cells. In IEEE Nordic Circuits and
Systems Conference (NORCAS), 2016.

[42] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas
Juffinger, Sioli O’Connell, Wolfgang Schoechl, and Yuval Yarom. An-
other Flip in the Wall of Rowhammer Defenses. In IEEE Symposium
on Security and Privacy (S&P), 2018.

[43] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowham-
mer.js: A Remote Software-Induced Fault Attack in Javascript. In
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA), 2016.

[44] HasanHassan, Ataberk Olgun, Abdullah Giray Yağlıkçı, Haocong Luo,
and Onur Mutlu. A Case for Self-Managing DRAM Chips: Improving
Performance, Efficiency, Reliability, and Security via Autonomous
in-DRAM Maintenance Operations. arXiv preprint arXiv:2207.13358,
2022.

[45] Hasan Hassan, Minesh Patel, Jeremie S Kim, Abdullah Giray Yağlıkçı,
Nandita Vijaykumar, NikaMansouri Ghiasi, Saugata Ghose, and Onur
Mutlu. Crow: A Low-Cost Substrate for Improving Dram Perfor-
mance, Energy Efficiency, and Reliability. In ACM/IEEE International
Symposium on Computer Architecture (ISCA), 2019.

[46] Hasan Hassan, Yahya Can Tugrul, Jeremie S Kim, Victor Van der Veen,
Kaveh Razavi, and Onur Mutlu. Uncovering In-DRAM RowHammer
Protection Mechanisms: A New Methodology, Custom RowHammer
Patterns, and Implications. In ACM/IEEE International Symposium on
Microarchitecture (MICRO), 2021.

[47] Red Hat. 2.14. Reduce CPU Performance Spikes. https:
//access.redhat.com/documentation/en-us/red_hat_enterprise_
linux_for_real_time/7/html/tuning_guide/reduce_cpu_
performance_spikes.

[48] Marius Hillenbrand. Physical Address Decoding in Intel Xeon v3/v4
CPUs: A Supplemental Datasheet. Karlsruhe Institute of Technology,
Tech. Rep., 2017.

[49] Marius Hillenbrand, Mathias Gottschlag, Jens Kehne, and Frank Bel-
losa. Multiple Physical Mappings: Dynamic DRAM Channel Sharing
and Partitioning. In ACM Asia Pacific Workshop on Systems (APSys),
2017.

[50] Seungki Hong, Dongha Kim, Jaehyung Lee, Reum Oh, Changsik Yoo,
Sangjoon Hwang, and Jooyoung Lee. DSAC: Low-Cost Rowhammer
Mitigation using In-Dram Stochastic and Approximate Counting
Algorithm. arXiv preprint arXiv:2302.03591, 2023.

[51] Masashi Horiguchi and Kiyoo Itoh. Nanoscale Memory Repair.
Springer Science & Business Media, 2011.

[52] Chih-Sheng Hou, Yong-Xiao Chen, Jin-Fu Li, Chih-Yen Lo, Ding-Ming
Kwai, and Yung-Fa Chou. A Built-In Self-Repair Scheme for DRAMs
with Spare Rows, Columns, and Bits. In 2016 IEEE International Test
Conference (ITC), 2016.

[53] Intel. Architecture Specification: Intel Trust Domain Extensions (Intel
TDX) Module, 2020. https://www.intel.com/content/dam/develop/

external/us/en/documents/intel-tdx-module-1eas.pdf.
[54] Intel. Intel Trust Domain Extensions (Intel TDX), 2022. https:

//software.intel.com/content/www/us/en/develop/articles/intel-
trust-domain-extensions.html.

[55] Intel. Introduction to Memory Bandwidth Allocation .
intel.com/content/www/us/en/developer/articles/technical/
introduction-to-memory-bandwidth-allocation.html, 2022.

[56] Intel. SKX EDAC Linux Driver. github.com/torvalds/linux/blob/
master/drivers/edac/skx_base.c, 2022.

[57] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. Systematic
Reverse Engineering of Cache Slice Selection in Intel Processors. In
IEEE Euromicro Conference on Digital System Design, 2015.

[58] Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo Kim. SGX-Bomb:
Locking down the Processor via Rowhammer Attack. InWorkshop
on System Software for Trusted Execution (SysTEX), 2017.

[59] Patrick Jattke, Victor van der Veen, Pietro Frigo, Stijn Gunter, and
Kaveh Razavi. Blacksmith: Scalable Rowhammering in the Frequency
Domain. In IEEE Symposium on Security and Privacy (S&P), 2022.

[60] JEDEC. Double Data Rate 4 (DDR4) SDRAM Standard, 2014.
[61] JEDEC. Low Power Double Data Rate 4 (LPDDR4) SDRAM Standard,

2017. JESD209-4B.
[62] JEDEC. DDR4 Registering Clock Driver Definition (DDR4RCD02), 2019.
[63] JEDEC. Double Data Rate 5 (DDR5) SDRAM Standard, 2020.
[64] JEDEC. DDR5 Registering Clock Driver Definition (DDR5RCD02), 2023.
[65] Sangwoo Ji, Youngjoo Ko, Saeyoung Oh, and Jong Kim. Pinpoint

Rowhammer: Suppressing Unwanted Bit Flips on Rowhammer At-
tacks. In ACM Asia Conference on Computer and Communications
Security (Asia CCS), 2019.

[66] Biresh Kumar Joardar, Tyler K Bletsch, and Krishnendu Chakrabarty.
Machine Learning-Based Rowhammer Mitigation. In IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
2022.

[67] Jithin Jose, Hari Subramoni, Miao Luo, Minjia Zhang, Jian Huang, Md.
Wasi-ur Rahman, Nusrat S. Islam, Xiangyong Ouyang, Hao Wang,
Sayantan Sur, and Dhabaleswar K. Panda. Memcached Design on
High Performance RDMA Capable Interconnects. In IEEE Interna-
tional Conference on Parallel Processing (ICPP), 2011.

[68] Jonas Juffinger, Lukas Lamster, Andreas Kogler, Maria Eichlseder,
Moritz Lipp, and Daniel Gruss. CSI: Rowhammer–Cryptographic
Security and Integrity against Rowhammer. In IEEE Symposium on
Security and Privacy (S&P), 2023. To appear.

[69] David Kaplan, Jeremy Powell, and Tom Woller. AMD Memory En-
cryption. White paper, 2016.

[70] Brent Keeth, R Jacob Baker, Brian Johnson, and Feng Lin. DRAM
Circuit Design: Fundamental and High-Speed Topics, volume 13. John
Wiley & Sons, 2007.

[71] The kernel development community. NUMA Memory Pol-
icy. kernel.org/doc/html/latest/admin-guide/mm/numa_memory_
policy.html, 2022.

[72] Jeremie Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu. Solar-
DRAM: Reducing DRAM Access Latency by Exploiting the Variation
in Local Bitlines. In IEEE International Conference on Computer Design
(ICCD), 2018.

[73] Jeremie S Kim, Minesh Patel, Hasan Hassan, Lois Orosa, and Onur
Mutlu. D-RaNGe: Using Commodity DRAMDevices to Generate True
Random Numbers with Low Latency and High Throughput. In IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 2019.

[74] Jeremie S Kim, Minesh Patel, Abdullah Giray Yağlıkçı, Hasan Hassan,
Roknoddin Azizi, Lois Orosa, and Onur Mutlu. Revisiting RowHam-
mer: An Experimental Analysis of Modern DRAMDevices andMitiga-
tion Techniques. In ACM/IEEE International Symposium on Computer
Architecture (ISCA), 2020.

430



[75] Jooyoung Kim, Woosung Lee, Keewon Cho, and Sungho Kang.
Hardware-Efficient Built-In Redundancy Analysis for Memory with
Various Spares. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 2016.

[76] Michael Jaemin Kim, Jaehyun Park, Yeonhong Park, Wanju Doh,
Namhoon Kim, Tae Jun Ham, Jae W Lee, and Jung Ho Ahn. Mithril:
Cooperative Row Hammer Protection on Commodity DRAM Lever-
aging Managed Refresh. arXiv preprint arXiv:2108.06703, 2021.

[77] Moonsoo Kim, Jungwoo Choi, Hyun Kim, and Hyuk-Jae Lee. An
Effective DRAM Address Remapping for Mitigating Rowhammer
Errors. IEEE Transactions on Computers, 2019.

[78] Woongrae Kim, Chulmoon Jung, Seongnyuh Yoo, Duckhwa Hong,
Jeongjin Hwang, Jungmin Yoon, Ohyong Jung, Joonwoo Choi, Sanga
Hyun, Mankeun Kang, Sangho Lee, Dohong Kim, Sanghyun Ku, Don-
hyun Choi, Nogeun Joo, Sangwoo Yoon, Junseok Noh, Byeongy-
ong Go, Cheolhoe Kim, Sunil Hwang, Mihyun Hwang, Seol-Min
Yi, Hyungmin Kim, Sanghyuk Heo, Yeonsu Jang, Kyoungchul Jang,
Shinho Chu, Yoonna Oh, Kwidong Kim, Junghyun Kim, Soohwan
Kim, Jeongtae Hwang, Sangil Park, Junphyo Lee, Inchul Jeong,
Joohwan Cho, and Jonghwan Kim. A 1.1 V 16Gb DDR5 DRAM
with Probabilistic-Aggressor Tracking, Refresh-Management Func-
tionality, Per-Row Hammer Tracking, a Multi-Step Precharge, and
Core-Bias Modulation for Security and Reliability Enhancement. In
IEEE International Solid-State Circuits Conference (ISSCC). IEEE, 2023.

[79] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flip-
ping Bits in Memory without Accessing Them: An Experimental
Study of DRAM Disturbance Errors. In ACM/IEEE International Sym-
posium on Computer Architecture (ISCA), 2014.

[80] Yoongu Kim, Vivek Seshadri, Donghyuk Lee, Jamie Liu, and Onur
Mutlu. A Case for Exploiting Subarray-Level Parallelism (SALP) in
DRAM. In ACM/IEEE International Symposium on Computer Architec-
ture (ISCA), 2012.

[81] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas De-
vadas, and Joel Emer. DAWG: A Defense Against Cache Timing
Attacks in Speculative Execution Processors. In ACM/IEEE Interna-
tional Symposium on Microarchitecture (MICRO), 2018.

[82] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori.
KVM: The Linux Virtual Machine Monitor. In Linux symposium,
2007.

[83] Andreas Kogler, Jonas Juffinger, Salman Qazi, Yoongu Kim, Moritz
Lipp, Nicolas Boichat, Eric Shiu, Mattias Nissler, and Daniel Gruss.
Half-Double: Hammering From the Next Row Over. In USENIX
Security Symposium (USENIX Security), 2022.

[84] Radhesh Krishnan Konoth, Marco Oliverio, Andrei Tatar, Dennis
Andriesse, Herbert Bos, Cristiano Giuffrida, and Kaveh Razavi. Ze-
bRAM: Comprehensive and Compatible Software Protection Against
Rowhammer Attacks. In USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2018.

[85] Alexey Kopytov. Sysbench Manual. MySQL AB, 2012.
[86] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yuval Yarom.

RAMBleed: Reading Bits in Memory Without Accessing Them. In
IEEE Symposium on Security and Privacy (S&P), 2020.

[87] Zhenrong Lang, Patrick Jattke, Michele Marazzi, and Kaveh Razavi.
BLASTER: Characterizing the Blast Radius of Rowhammer. In Work-
shop on DRAM Security (DRAMSec), 2023.

[88] Donghyuk Lee, Yoongu Kim, Vivek Seshadri, Jamie Liu, Lavanya Sub-
ramanian, and Onur Mutlu. Tiered-Latency DRAM: A Low Latency
and Low Cost DRAM Architecture. In IEEE International Symposium
on High Performance Computer Architecture (HPCA), 2013.

[89] Eojin Lee, Ingab Kang, Sukhan Lee, G Edward Suh, and Jung Ho
Ahn. TWiCe: Preventing Row-Hammering by Exploiting Time Win-
dow Counters. In ACM/IEEE International Symposium on Computer
Architecture (ISCA), 2019.

[90] Seunghak Lee, Nam Sung Kim, and Daehoon Kim. Exploiting OS-
Level Memory Offlining for DRAM Power Management. IEEE Com-
puter Architecture Letters (CAL), 2019.

[91] Congmiao Li and Jean-Luc Gaudiot. Detecting Malicious Attacks
Exploiting Hardware Vulnerabilities Using Performance Counters.
In IEEE Computer Software and Applications Conference (COMPSAC),
2019.

[92] Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst, Pantea Zar-
doshti, Stanko Novakovic, Monish Shah, Samir Rajadnya, Scott Lee,
Ishwar Agarwal, Mark D. Hill, Marcus Fontoura, and Ricardo Bian-
chini. Pond: CXL-Based Memory Pooling Systems for Cloud Plat-
forms. In International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), 2023.

[93] Moritz Lipp, Michael Schwarz, Lukas Raab, Lukas Lamster,
Misiker Tadesse Aga, ClémentineMaurice, andDaniel Gruss. Netham-
mer: Inducing Rowhammer Faults Through Network Requests. In
IEEE European Symposium on Security and Privacy Workshops (Eu-
roS&PW), 2020.

[94] Qi Liu, Jieming Yin, Wujie Wen, Chengmo Yang, and Shi Sha. Neu-
roPots: Realtime Proactive Defense against Bit-Flip Attacks in Neural
Networks. In USENIX Security Symposium (USENIX Security), 2023.

[95] Kevin Loughlin, Jonah Rosenblum, Stefan Saroiu, Alec Wolman, Dim-
itrios Skarlatos, and Baris Kasikci. Siloz Source Code. github.com/
efeslab/siloz, 2023.

[96] Kevin Loughlin, Stefan Saroiu, Alec Wolman, and Baris Kasikci. Stop!
Hammer Time: RethinkingOurApproach to RowhammerMitigations.
In Workshop on Hot Topics in Operating Systems (HotOS), 2021.

[97] Kevin Loughlin, Stefan Saroiu, Alec Wolman, and Baris Kasikci.
Software-Defined Memory Controllers: An Idea Whose Time Has
Come. In Wild and Crazy Ideas (WACI) Session at ASPLOS, 2022.

[98] Kevin Loughlin, Stefan Saroiu, Alec Wolman, Yatin A. Manerkar,
and Baris Kasikci. MOESI-prime: Preventing Coherence-Induced
Hammering in Commodity Workloads. In ACM/IEEE International
Symposium on Computer Architecture (ISCA), 2022.

[99] Robert Love. Kernel Korner: CPU Affinity. Linux Journal, 2003.
[100] Shih-Lien Lu, Ying-Chen Lin, and Chia-Lin Yang. Improving DRAM

Latency with Dynamic Asymmetric Subarray. In ACM/IEEE Interna-
tional Symposium on Microarchitecture (MICRO), 2015.

[101] Haocong Luo, Ataberk Olgun, Abdullah Giray Yağlıkçı, Yahya Can
Tuğrul, Steve Rhyner, Meryem Banu Cavlak, Joël Lindegger, Mo-
hammad Sadrosadati, and Onur Mutlu. RowPress: Amplifying Read
Disturbance in Modern DRAM Chips. In ACM/IEEE Annual Interna-
tional Symposium on Computer Architecture (ISCA), 2023.

[102] Sangkug Lym, Heonjae Ha, Yongkee Kwon, Chun-kai Chang, Jungrae
Kim, and Matta Erez. ERUCA: Efficient DRAM Resource Utilization
and Resource Conflict Avoidance for Memory System Parallelism. In
IEEE International Symposium on High Performance Computer Archi-
tecture (HPCA), 2018.

[103] Jialun Lyu, Marisa You, Celine Irvene, Mark Jung, Tyler Narmore,
Jacob Shapiro, Luke Marshall, Savyasachi Samal, Ioannis Manousakis,
Lisa Hsu, Preetha Subbarayalu, Ashish Raniwala, Brijesh Warrier,
Ricardo Bianchini, Bianca Schroeder, andDaniel S. Berger. Hyrax: Fail-
in-Place Server Operation in Cloud Platforms. In USENIX Symposium
on Operating Systems Design and Implementation (OSDI), 2023.

[104] MichaelMMadden. Challenges Using Linux as a Real-TimeOperating
System. In AIAA Scitech 2019 Forum, 2019.

[105] Michele Marazzi, Patrick Jattke, Solt Flavien, and Kaveh Razavi. PRO-
TRR: Principled yet Optimal In-DRAM Target Row Refresh. In IEEE
Symposium on Security and Privacy (S&P), 2022.

[106] Michele Marazzi, Flavien Solt, Patrick Jattke, Kubo Takashi, and
Kaveh Razavi. REGA: Scalable Rowhammer Mitigation with Refresh-
Generating Activations. In IEEE Symposium on Security and Privacy
(S&P), 2023. To appear.

[107] John McCalpin. Address Hashing in Intel Processors. UT Fac-
ulty/Researcher Works, 2018.

431



[108] John D McCalpin. STREAM Benchmark. Link: www.cs.virginia.
edu/stream/ref.html#what, 1995.

[109] Microsoft. Hyper-V Virtual NUMA Overview. Microsoft Learn, 2016.
[110] Microsoft. High Performance Computing VM Sizes, 2023.
[111] Srikanta Kumar Mohapatra, Sankararao Majji, Prathipati Ratna Ku-

mar, Ravula Arun Kumar, and Santoshachandra Rao Karanam. Au-
thentication of Sub-NUMA Clustering Effect on Intel Skylake for
Memory Latency and Bandwidth. Turkish Journal of Computer and
Mathematics Education (TURCOMAT), 2021.

[112] Thomas Moscibroda and Onur Mutlu. Memory Performance Attacks:
Denial of Memory Service in Multi-Core Systems. In USENIX Security
Symposium (USENIX Security), 2007.

[113] Koksal Mus, Yarkın Doröz, M Caner Tol, Kristi Rahman, and Berk
Sunar. Jolt: Recovering TLS Signing Keys via Rowhammer Faults.
Cryptology ePrint Archive, 2022.

[114] Onur Mutlu. Memory Scaling: A Systems Architecture Perspective.
In IEEE International Memory Workshop, 2013.

[115] Onur Mutlu. The RowHammer Problem and Other Issues We May
Face as Memory Becomes Denser. In Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2017.

[116] Onur Mutlu, Ataberk Olgun, and Abdullah Giray Yağlıkçı. Funda-
mentally Understanding and Solving RowHammer. arXiv preprint
arXiv:2211.07613, 2022.

[117] Hwayong Nam, Seungmin Baek, Minbok Wi, Michael Jaemin Kim,
Jaehyun Park, Chihun Song, Nam Sung Kim, and Jung Ho Ahn. X-
ray: Discovering DRAM Internal Structure and Error Characteristics
by Issuing Memory Commands. IEEE Computer Architecture Letters
(CAL), 2023.

[118] Jack Norris. Package org.apache.hadoop.examples.terasort, 2013.
[119] Ataberk Olgun, Majd Osseiran, Yahya Can Tuğrul, Haocong Luo,

Steve Rhyner, Behzad Salami, Juan Gomez Luna, and Onur Mutlu.
An Experimental Analysis of RowHammer in HBM2 DRAM Chips.
In IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN), 2023.

[120] Lois Orosa, Abdullah Giray Yağlıkçı, Haocong Luo, Ataberk Olgun,
Jisung Park, Hasan Hassan, Minesh Patel, Jeremie S Kim, and Onur
Mutlu. A Deeper Look into RowHammer’s Sensitivities: Experimental
Analysis of Real DRAM Chipsand Implications on Future Attacks and
Defenses. In ACM/IEEE International Symposium on Microarchitecture
(MICRO), 2021.

[121] Yeonhong Park, Woosuk Kwon, Eojin Lee, Tae Jun Ham, Jung Ho Ahn,
and Jae W Lee. Graphene: Strong yet Lightweight Row Hammer Pro-
tection. In ACM/IEEE International Symposium on Microarchitecture
(MICRO), 2020.

[122] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and
Stefan Mangard. DRAMA: Exploiting DRAM Addressing for Cross-
CPU Attacks. In USENIX Security Symposium (USENIX Security),
2016.

[123] Rui Qiao and Mark Seaborn. A New Approach for Rowhammer
Attacks. In IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), 2016.

[124] Moinuddin Qureshi, Aditya Rohan, Gururaj Saileshwar, and
Prashant J Nair. Hydra: Enabling Low-Overhead Mitigation of Row-
Hammer at Ultra-Low Thresholds via Hybrid Tracking. In ACM/IEEE
International Symposium on Computer Architecture (ISCA), 2022.

[125] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel, Cristiano Giuf-
frida, and Herbert Bos. Flip Feng Shui: Hammering a Needle in the
Software Stack. In USENIX Security Symposium (USENIX Security),
2016.

[126] Kaveh Razavi and Animesh Trivedi. Stratus: Clouds with Microarchi-
tectural Resource Management. In USENIX Workshop on Hot Topics
in Cloud Computing (HotCloud), 2020.

[127] Rusty Russell. Virtio: Towards a De-Facto Standard for Virtual I/O
Devices. ACM SIGOPS Operating Systems Review, 42(5), 2008.

[128] Gururaj Saileshwar, Bolin Wang, Moinuddin Qureshi, and Prashant J
Nair. Randomized Row-Swap: Mitigating Row Hammer by Breaking
Spatial Correlation Between Aggressor and Victim Rows. In Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2022.

[129] Stefan Saroiu, AlecWolman, and Lucian Cojocar. The Price of Secrecy:
How Hiding Internal DRAM Topologies Hurts Rowhammer Defenses.
In International Reliability Physics Symposium (IRPS), 2022.

[130] Anish Saxena, Gururaj Saileshwar, Jonas Juffinger, Andreas Kogler,
Daniel Gruss, and Moinuddin Qureshi. PT-Guard: Integrity-Protected
Page Tables to Defend Against Breakthrough Rowhammer Attacks.
In IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN), 2023.

[131] Anish Saxena, Gururaj Saileshwar, Prashant J Nair, and Moinuddin
Qureshi. AQUA: Scalable Rowhammer Mitigation by Quarantining
Aggressor Rows at Runtime. In ACM/IEEE International Symposium
on Microarchitecture (MICRO), 2022.

[132] Stijn Schildermans, Kris Aerts, Jianchen Shan, and Xiaoning Ding.
Paratick: Reducing Timer Overhead in Virtual Machines. In Interna-
tional Conference on Parallel Processing, 2021.

[133] Mark Seaborn and Thomas Dullien. Exploiting the DRAM Rowham-
mer Bug to Gain Kernel Privileges. Black Hat, 2015. See
also http://googleprojectzero.blogspot.co/2015/03/exploiting-dram-
rowhammer-bug-to-gain.html.

[134] Seyed Mohammad Seyedzadeh, Alex K Jones, and Rami Melhem.
Mitigating Wordline Crosstalk Using Adaptive Trees of Counters. In
ACM/IEEE Annual International Symposium on Computer Architecture
(ISCA), 2018.

[135] Seyed Mohammad Seyedzadeh, Donald Kline Jr, Alex K Jones, and
RamiMelhem. Mitigating Bitline Crosstalk Noise in DRAMMemories.
In International Symposium on Memory Systems, 2017.

[136] Ali Shafiee, Akhila Gundu, Manjunath Shevgoor, Rajeev Balasubra-
monian, and Mohit Tiwari. Avoiding Information Leakage in the
Memory Controller with Fixed Service Policies. In ACM/IEEE Inter-
national Symposium on Microarchitecture (MICRO), 2015.

[137] Vipin Sharma. NUMA Aware Page Table’s Page Allocation. LWN,
2022.

[138] Suresh Siddha, Venkatesh Pallipadi, and AVD Ven. Getting Maximum
Mileage out of Tickless. In Linux Symposium. Citeseer, 2007.

[139] Young Hoon Son, O Seongil, Yuhwan Ro, JaeW Lee, and Jung Ho Ahn.
Reducing Memory Access Latency with Asymmetric DRAM Bank
Organizations. In ACM/IEEE International Symposium on Computer
Architecture (ISCA), 2013.

[140] Androski Spicer. Deep Dive on Amazon EC2, 2017.
[141] Jovan Stojkovic, Dimitrios Skarlatos, Apostolos Kokolis, Tianyin Xu,

and Josep Torrellas. Parallel Virtualized Memory Translation with
Nested Elastic Cuckoo Page Tables. In International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems
(ASPLOS), 2022.

[142] Brian K Tanaka. Monitoring Virtual Memory with vmstat. Linux
Journal, 2005.

[143] Xulong Tang, Mahmut Kandemir, Praveen Yedlapalli, and Jagadish
Kotra. Improving Bank-Level Parallelism for Irregular Applications.
In ACM/IEEE International Symposium on Microarchitecture (MICRO),
2016.

[144] Andrei Tatar, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi.
Defeating Software Mitigations Against Rowhammer: A Surgical
Precision Hammer. In International Symposium on Research in Attacks,
Intrusions, and Defenses (RAID), 2018.

[145] Youssef Tobah, Andrew Kwong, Ingab Kang, Daniel Genkin, and
Kang G Shin. SpecHammer: Combining Spectre and Rowhammer for
New Speculative Attacks. In IEEE Symposium on Security and Privacy
(S&P), 2022.

[146] Linus Torvalds et al. Linux Source Code. https://github.com/torvalds/
linux, 2023.

432



[147] Unified Extensible Firmware Interface UEFI. Advanced Configuration
and Power Interface Specification. ACPI. INFO, Roseville, 2013.

[148] Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L Santoni, Fernando CM
Martins, Andrew V Anderson, Steven M Bennett, Alain Kagi, Felix H
Leung, and Larry Smith. Intel Virtualization Technology. Computer,
2005.

[149] Victor Van Der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel
Gruss, Clémentine Maurice, Giovanni Vigna, Herbert Bos, Kaveh
Razavi, and Cristiano Giuffrida. Drammer: Deterministic Rowham-
mer Attacks on Mobile Platforms. In ACM SIGSAC conference on
computer and communications security (CCS), 2016.

[150] Victor van der Veen, Martina Lindorfer, Yanick Fratantonio, Harikr-
ishnan Padmanabha Pillai, Giovanni Vigna, Christopher Kruegel,
Herbert Bos, and Kaveh Razavi. GuardION: Practical Mitigation of
DMA-based Rowhammer Attacks on ARM. In International Con-
ference on Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA), 2018.

[151] Kirtana Venkatraman. Virtual Machine Memory Allocation and
Placement on Azure Stack. Microsoft Azure, 2019.

[152] Vish Viswanathan, Karthik Kumar, Thomas Willhalm, Patrick Lu,
Blazej Filipiak, and Sri Sakthivelu. Intel Memory Latency Checker
v3.9a. Intel, 2021.

[153] VMware. Using NUMA Systems with ESXi. VMware Docs, 2022.
[154] Yao Wang, Andrew Ferraiuolo, and G Edward Suh. Timing Channel

Protection for a Shared Memory Controller. In IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE,
2014.

[155] Yaohua Wang, Lois Orosa, Xiangjun Peng, Yang Guo, Saugata Ghose,
Minesh Patel, Jeremie S. Kim, Juan Gómez-Luna, Mohammad Sadrosa-
dati, Nika Mansouri-Ghiasi, and Onur Mutlu. FIGARO: Improving
System Performance via Fine-Grained In-DRAM Data Relocation and
Caching. In ACM/IEEE International Symposium on Microarchitecture
(MICRO), 2020.

[156] Zicheng Wang. Can “Micro VM” Become the Next Generation Com-
puting Platform?: Performance Comparison Between Light Weight
Virtual Machine, Container, and Traditional Virtual Machine. In IEEE
International Conference on Computer Science, Artificial Intelligence
and Electronic Engineering (CSAIEE), 2021.

[157] Johannes Weiner, Niket Agarwal, Dan Schatzberg, Leon Yang, Hao
Wang, Blaise Sanouillet, Bikash Sharma, Tejun Heo, Mayank Jain,
Chunqiang Tang, and Dimitrios Skarlatos. TMO: Transparent Mem-
ory Offloading in Datacenters. In International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS), 2022.

[158] Frederic Weisbecker. Status of Linux Dynticks. In Workshop on
Operating Systems Platforms for Embedded Real-Time applications-
OSPERT13. Citeseer, 2013.

[159] Minbok Wi, Jaehyun Park, Seoyoung Ko, Michael Jaemin Kim,
Nam Sung Kim, Eojin Lee, and Jung Ho Ahn. SHADOW: Preventing
Row Hammer in DRAM with Intra-Subarray Row Shuffling. In IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 2023.

[160] Jeonghyun Woo, Gururaj Saileshwar, and Prashant J Nair. Scalable
and Secure Row-Swap: Efficient and Safe Row Hammer Mitigation
in Memory Systems. In IEEE International Symposium on High Per-
formance Computer Architecture (HPCA), 2023.

[161] Xin-ChuanWu, Timothy Sherwood, Frederic T Chong, and Yanjing Li.
Protecting Page Tables from Rowhammer Attacks Using Monotonic
Pointers in DRAM True-Cells. In International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS), 2019.

[162] Xen. Xen on NUMA Machines. Xen Project Wiki, 2015.

[163] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu Teodorescu.
One Bit Flips, One Cloud Flops: Cross-VM Row Hammer Attacks
and Privilege Escalation. In USENIX Security Symposium (USENIX
Security), 2016.

[164] Abdullah Giray Yağlıkçı, Jeremie S Kim, Fabrice Devaux, and Onur
Mutlu. Security Analysis of the Silver Bullet Technique for RowHam-
mer Prevention. arXiv preprint arXiv:2106.07084, 2021.

[165] Abdullah Giray Yağlıkçı, Haocong Luo, Geraldo F De Oliviera,
Ataberk Olgun, Minesh Patel, Jisung Park, Hasan Hassan, Jeremie S
Kim, Lois Orosa, and Onur Mutlu. Understanding RowHammer Un-
der Reduced Wordline Voltage: An Experimental Study Using Real
DRAM Devices. In IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 2022.

[166] Abdullah Giray Yağlıkçı, Ataberk Olgun, Minesh Patel, Haocong Luo,
Hasan Hassan, Lois Orosa, Oğuz Ergin, and Onur Mutlu. HiRA: Hid-
den Row Activation for Reducing Refresh Latency of Off-the-Shelf
DRAM Chips. In ACM/IEEE International Symposium on Microarchi-
tecture (MICRO), 2022.

[167] Abdullah Giray Yağlıkçı, Minesh Patel, Jeremie S. Kim, Roknoddin
Azizi, Ataberk Olgun, Lois Orosa, Hasan Hassan, Jisung Park, Kon-
stantinos Kanellopoulos, Taha Shahroodi, Saugata Ghose, and Onur
Mutlu. BlockHammer: Preventing RowHammer at Low Cost by
Blacklisting Rapidly-Accessed DRAM Rows. In IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2021.

[168] Yuval Yarom, Qian Ge, Fangfei Liu, Ruby B Lee, and Gernot Heiser.
Mapping the Intel Last-Level Cache. Cryptology ePrint Archive, 2015.

[169] Jung Min You and Joon-Sung Yang. MRLoc: Mitigating Row-
hammering Based on Memory Locality. In ACM/IEEE Design Au-
tomation Conference (DAC), 2019.

[170] Xusheng Zhan, Yungang Bao, Christian Bienia, and Kai Li. PARSEC
3.0: A Multicore Benchmark Suite with Network Stacks and SPLASH-
2X. ACM SIGARCH Computer Architecture News (CAN), 2017.

[171] Zhao Zhang, Zhichun Zhu, and Xiaodong Zhang. A Permutation-
Based Page Interleaving Scheme to Reduce Row-Buffer Conflicts and
Exploit Data Locality. In ACM/IEEE International Symposium on
Microarchitecture (MICRO), 2000.

[172] Zhi Zhang, Yueqiang Cheng, Dongxi Liu, Surya Nepal, Zhi Wang, and
Yuval Yarom. PThammer: Cross-User-Kernel-Boundary Rowhammer
Through Implicit Accesses. In ACM/IEEE International Symposium
on Microarchitecture (MICRO), 2020.

[173] Zhi Zhang, Yueqiang Cheng, Minghua Wang, Wei He, Wenhao Wang,
Surya Nepal, Yansong Gao, Kang Li, Zhe Wang, and Chenggang Wu.
SoftTRR: Protect Page Tables against Rowhammer Attacks using
Software-only Target Row Refresh. In USENIX Annual Technical
Conference (ATC), 2022.

[174] Ziyuan Zhang, Meiqi Wang, Wencheng Chen, Han Qiu, and Meikang
Qiu. Mitigating Targeted Bit-Flip Attacks via Data Augmentation:
An Empirical Study. In International Conference on Knowledge Science,
Engineering and Management, 2022.

[175] Kaiyang Zhao, Kaiwen Xue, Ziqi Wang, Dan Schatzberg, Leon Yang,
Antonis Manousis, Johannes Weiner, Rik Van Riel, Bikash Sharma,
Chunqiang Tang, and Dimitrios Skarlatos. Contiguitas: The Pursuit
of Physical Memory Contiguity in Datacenters. In ACM/IEEE Annual
International Symposium on Computer Architecture (ISCA), 2023.

[176] Ranyang Zhou, Sabbir Ahmed, Adnan Siraj Rakin, and Shaahin Angizi.
DNN-Defender: An in-DRAM Deep Neural Network Defense Mecha-
nism for Adversarial Weight Attack. arXiv preprint arXiv:2305.08034,
2023.

[177] Yanqi Zhou, SameerWagh, Prateek Mittal, and DavidWentzlaff. Cam-
ouflage: Memory Traffic Shaping to Mitigate Timing Attacks. In IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 2017.

433


