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ABSTRACT

Cloud providers must isolate each execution context—e.g., a virtual machine (VM)—atop shared
hardware. Unfortunately, commodity hardware only strongly enforces context isolation at the ar-
chitectural level, failing to enforce isolation in the microarchitectural implementation of hardware.
The lack of microarchitectural isolation yields a wide range of threats to system security and reli-
ability, including denial-of-service, data loss, data leakage, and even system subversion.

Accordingly, this dissertation presents mitigations for two of the most prominent classes of
modern microarchitectural vulnerabilities: transient execution attacks on CPUs—which allow
arbitrary data to be leaked from processors via mis-speculation and timing side channels—and
Rowhammer—which corrupts and potentially leaks data in DRAM via memory access patterns
that produce silicon-level disturbance effects. In particular, DOLMA provides the first hardware
mitigation against all demonstrated transient execution attacks at the time of publication. Stop!

Hammer Time presents hardware primitives upon which scalable and flexible software defenses
can be built across the taxonomy of Rowhammer mitigations. MOESI-prime introduces coherence-
induced hammering, the first form of hammering shown to occur in non-malicious code, and pro-
vides a corresponding coherence protocol-based mitigation. Finally, Siloz isolates different VMs
to private DRAM subarray groups (across which Rowhammer attacks are ineffective), thereby
preventing inter-VM Rowhammer bit flips.

xii



CHAPTER 1

Introduction

Execution context isolation is a fundamental security and reliability requirement in multitenant
computing environments such as the cloud. It is vital that data belonging to one context—e.g., a
process, enclave, or virtual machine (VM)—cannot be accessed or modified by another context
without explicit permission. However, the level of context isolation provided by today’s systems
is out-of-sync with the security and reliability needs of cloud providers and customers alike.

Namely, current hardware only strongly enforces context isolation at the architectural (i.e.,
direct access) level, failing to prevent cross-context interactions at the microarchitectural (i.e.,
indirect access) level [77, 251, 338]. For instance, while architectural page table permission bits
prevent software from explicitly bypassing hardware permission checks, attackers can still read or
corrupt data via implicit microarchitectural behavior. Indeed, transient execution attacks [22, 35,
45, 156, 158, 164, 179, 191, 194, 196, 226, 227, 229, 245, 264, 266, 267, 268, 283, 291, 296, 297, 301,
302,303,316,326] demonstrate that remote adversaries can transiently bypass architectural context
isolation to leak arbitrary data from another context.

Worsening the problem, data is vulnerable to microarchitectural exploits both on-processor and
in-memory. For example, as demonstrated by DRAM disturbances/Rowhammer attacks [51, 52,
53,59,72,75,91,92,98,124,125,131,147,147,152,152,152,160,160,167,180,185,215,218,219,
233,241,250,261,269,288,289,299,300,325,328,346], frequent accesses to an aggressor row of
DRAM within a short time period can corrupt or leak data in physically-proximate victim rows via
induced charge leakages, regardless of execution context.

Fundamentally, microarchitectural exploits stem from a pervasive problem in today’s systems:
commodity microarchitectures do not strongly enforce context isolation (e.g., VM-to-VM). Such
microarchitectures have arisen due to outdated threat models and corresponding legacy designs
that form the basis of modern hardware, with microarchitectural context isolation coming as an
afterthought. Given the ongoing deluge of exploits, it is crucial to provide both hardware and
software mitigations for microarchitectural vulnerabilities.

Accordingly, in this dissertation, I present various mitigations for both transient execution at-
tacks and Rowhammer bit flips—two of the most concerning microarchitectural exploits in today’s
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systems. I first present a hardware-based information flow control defense against transient execu-
tion attacks (§1.1). Thereafter, I present hardware-software co-design mitigations for Rowhammer
bit flips (§1.2), followed by introducing a new form of hammering that occurs in non-malicious
code, as well as a corresponding mitigation (§1.3). Finally, I present a software defense against
inter-VM Rowhammer bit flips, deployable on today’s (vulnerable) hardware with negligible per-
formance impact (§1.4).

Thesis Statement: Providing microarchitectural context isolation in CPUs and DRAM efficiently
and feasibly mitigates hardware-based vulnerabilities in cloud systems.

1.1 DOLMA: Securing Speculation with the Principle of Tran-
sient Non-Observability

Modern processors allow attackers to leak data during transient (i.e., mis-speculated) execution
through microarchitectural covert timing channels. While initial defenses were channel-specific,
recent solutions employ speculative information flow control in an attempt to automatically miti-
gate attacks via any channel. However, I demonstrate that the current state-of-the-art defense fails
to mitigate attacks using speculative stores, still allowing arbitrary data leakage during transient
execution. Furthermore, I show that the state of the art does not scale to protect data in registers,
incurring 30.8–63.4% overhead on SPEC 2017, depending on the threat model.

I then present DOLMA, the first defense to automatically provide comprehensive protection
against all known transient execution attacks. DOLMA combines a lightweight speculative infor-
mation flow control scheme with a set of secure performance optimizations. By enforcing a novel
principle of transient non-observability, DOLMA ensures that a time slice on a core provides a
unit of isolation in the context of existing attacks. Accordingly, DOLMA can allow speculative
TLB/L1 cache accesses and variable-time arithmetic without loss of security. On SPEC 2017,
DOLMA achieves comprehensive protection of data in memory at 10.2–29.7% overhead, adding
protection for data in registers at 22.6–42.2% overhead (8.2–21.2% less than the state of the art,
with greater security).

1.2 Stop! Hammer time: Rethinking Our Approach to
Rowhammer Mitigations

Rowhammer attacks exploit electromagnetic interference among nearby DRAM cells to flip bits,
corrupting data and altering system behavior. Unfortunately, DRAM vendors have opted for a
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blackbox approach to preventing these bit flips, exposing little information about in-DRAM miti-
gations. Despite vendor claims that their mitigations prevent Rowhammer, recent work bypasses
these defenses to corrupt data. Further work shows that the Rowhammer problem is actually wors-

ening in emerging DRAM and posits that system-level support is needed to produce adaptable and
scalable defenses.

Accordingly, I argue that the systems community can and must drive a fundamental change
in Rowhammer mitigation techniques. In the short term, cloud providers and CPU vendors
must work together to supplement limited in-DRAM mitigations—ill-equipped to handle rising
susceptibility—with their own mitigations. I propose novel hardware primitives in the CPU’s
integrated memory controller that would enable a variety of efficient software defenses, offering
flexible safeguards against future attacks. In the long term, I assert that major consumers of DRAM
must persuade DRAM vendors to provide precise information on their defenses, limitations, and
necessary supplemental solutions.

1.3 MOESI-prime: Preventing Coherence-Induced Hammer-
ing in Commodity Workloads

Adversaries typically mount Rowhammer attacks via instruction sequences that are carefully-
crafted to bypass CPU caches. However, I discover a novel form of hammering that I refer to as
coherence-induced hammering, caused by Intel’s implementations of cache coherent non-uniform
memory access (ccNUMA) protocols. I show that this hammering occurs in commodity bench-

marks on a major cloud provider’s production hardware, the first hammering found to be generated
by non-malicious code. Given DRAM’s rising susceptibility to bit flips, it is paramount to prevent
coherence-induced hammering to ensure reliability and security in the cloud.

Accordingly, I introduce MOESI-prime, a ccNUMA coherence protocol that mitigates
coherence-induced hammering while retaining Intel’s state-of-the-art scalability. MOESI-prime
shows that most DRAM reads and writes triggering such hammering are unnecessary. Thus, by
encoding additional information in the coherence protocol, MOESI-prime can omit these reads
and writes, preventing coherence-induced hammering in non-malicious and malicious workloads.
Furthermore, by omitting unnecessary reads and writes, MOESI-prime has negligible effect on
average performance (within ±0.61% of MESI and MOESI) and average DRAM power (0.03%–
0.22% improvement) across evaluated ccNUMA configurations.
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1.4 Siloz: Leveraging DRAM Isolation Domains to Prevent
Inter-VM Rowhammer

Today’s cloud DRAM lacks strong isolation primitives, highlighted by Rowhammer bit flips. Sys-
tems with state-of-the-art hardware mitigations remain vulnerable, turning cloud providers toward
software defenses. However, existing software mitigations incur high performance/memory over-
head or suffer from significant gaps in protection.

Accordingly, I introduce Siloz, a hypervisor that uses a subarray group DRAM isolation prim-
itive to enable efficient protection against inter-VM Rowhammer. Siloz exploits the insights that
(a) Rowhammer can only flip bits in DRAM rows located in the same subarray—not across
subarrays—and (b) VMs can be isolated to groups of subarrays without sacrificing bank-level
parallelism, a key component of DRAM performance. Siloz prevents inter-VM bit flips by placing
each VM’s and the host’s data into private subarray groups. To additionally ensure that a VM can-
not escape its provisioned subarray group(s), Siloz provides integrity protection for extended page
tables (EPTs). We show that Siloz’s implementation has negligible effect on average performance
across various cloud workloads, SPEC CPU 2017, and PARSEC 3.0 (within ±0.5% of baseline
Linux/KVM).

1.5 Summary

My dissertation research improves system security and reliability by providing various mitiga-
tions for transient execution attacks on CPUs and Rowhammer bit flips in DRAM. The rest of
this dissertation is structured as follows. In chapter 2, I describe DOLMA, my proposed miti-
gation for transient execution attacks. I then highlight the desirability of hardware-software co-
design in Rowhammer mitigations and propose hardware primitives to enable scalable and flexi-
ble software defenses (chapter 3). I subsequently present coherence-induced hammering—a novel
form of DRAM hammering which occurs in non-malicious code—and a corresponding mitigation:
MOESI-prime (chapter 4). I next introduce Siloz, a hypervisor that provides inter-VM Rowham-
mer protection by isolating different VMs to private subarray groups (chapter 5). I conclude with
a recap of my completed work and my vision for future work (chapter 6).
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CHAPTER 2

DOLMA: Securing Speculation with the Principle of
Transient Non-Observability

2.1 Introduction

Speculative execution is a crucial performance optimization for modern processors. Unfortunately,
the ongoing deluge of transient execution attacks [22,35, 45,156,158, 164,179, 191,194, 196,226,
227, 229, 245, 264, 266, 267, 268, 283, 291, 296, 297, 301, 302, 303, 316, 326] demonstrates that the
implementation of speculative execution in commodity processors allows attackers to leak data
during transient (i.e., mis-speculated or wrong-path) execution. Specifically, attackers exploit tran-
sient micro-ops whose operands are leaked via covert timing channels—e.g., hardware structures
like the data cache (D-cache), which exhibit operand-dependent timing.

Transient execution attacks can be classified into two primary categories [34]. The first class
of attacks rely on delayed handling of microarchitectural exception-like conditions—henceforth
referred to as exceptions—to leak data (e.g., Meltdown [179] and similar attacks [35, 227, 229,
245, 266, 268, 283, 296, 297, 301, 302, 316]). In certain commodity processors, speculative reads
can access data in spite of—or because of—exceptions. The exception is not handled until the
associated micro-op reaches commit, offering attackers a window in which data can be transmitted
through covert timing channels. Thankfully, all known Meltdown-type attacks can be thwarted by
handling potential exceptions earlier in the pipeline, such that transient reads do not propagate data
to dependent micro-ops [179, 315].

The second class of attacks do not rely on delayed exception handling, and instead solely exploit
hardware mispredictions to leak data (e.g., Spectre [158] and similar attacks [22,45,156,158,164,
191, 194, 196, 226, 267]). For instance, Spectre v1 [158] shows that an attacker in one security
domain can mis-train the branch predictor to transiently bypass a bounds check in a victim domain,
thereby allowing micro-ops following a branch to leak victim data. Contrary to Meltdown-type
attacks, there is no known comprehensive solution for Spectre-type attacks, apart from disabling
speculation.
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Because the majority of transient execution attacks use the D-cache as the covert channel [35,
45, 156, 158, 164, 179, 191, 194, 226, 227, 229, 264, 266, 268, 283, 291, 296, 297, 301, 302, 303, 316,
326], initial defenses such as InvisiSpec [331] and others [2, 143, 154, 177, 255, 258, 259] have
focused on protecting the D-cache. However, these solutions do not prevent numerous other covert
channels [22, 34, 196, 245, 267, 298, 327] from leaking data during transient execution.

Recent solutions [17,76,163,265,315,338,340] acknowledge the shortcomings of cache-centric
mitigations, and instead employ speculative information flow control to prevent secrets from enter-
ing any covert timing channel until speculation resolves. Unfortunately, current defenses are not
comprehensive. For example, manual defenses [76, 265, 338] require error-prone annotations of
secrets to limit performance overhead.

On the other hand, existing automatic defenses [17, 315, 340] suffer from high overhead. As
such, they focus on the protection of speculatively-accessed data (e.g., data in memory at the begin-
ning of the speculation window) and fail to comprehensively protect non-speculatively-accessed
data (to a first approximation, data in registers at the beginning of the speculation window). For
example, NDA [315] conservatively prohibits speculative micro-ops from propagating their results
to any of their dependent micro-ops until speculation resolves. Thus, NDA eschews knowledge
of the microarchitecture to achieve channel-agnostic protection, resulting in high overheads. NDA
incurs 22.3% overhead to protect data in memory against Spectre-type attacks, and 100% overhead
to supplementally protect against Meltdown-type attacks on SPEC 2017. To provide even partial
protection for data in registers, NDA’s performance overheads rise to 45–125%, respectively.

The current state-of-the-art defense, STT [338], uses speculative taint tracking to only delay
dependent micro-ops that affect processor backend timing (e.g., during execution) or frontend tim-
ing (e.g., during fetch) as a function of their operands. Thus, STT is able to significantly improve
upon the overheads of channel-agnostic solutions such as NDA and variants of SpecShield [17].
Nonetheless, according to our evaluation, the overhead of protecting data in memory with STT
is still 8.7–44.5%, with those figures rising to 30.8–63.4% if one extends STT to protect data in
registers.

More importantly, I demonstrate that STT still allows arbitrary data leakages during transient
execution. Despite documented transient execution attacks exploiting speculative stores [35, 228,
291, 303], STT assumes stores in isolation are safe unless the processor permits speculative cache
line invalidations [291, 340]. However, even without speculative invalidations, stores can still leak
information. I demonstrate a novel variant of Spectre [158] that uses a speculative store to transmit
data through the TLB, despite STT’s protections being enabled. Thus, STT does not yield the
comprehensive protection it claims to offer; an attacker can still leak arbitrary data under both its
Spectre-type threat model and Meltdown-type threat model.

In this paper, I present DOLMA, the first defense to automatically provide comprehensive pro-
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tection against all existing transient execution attacks. DOLMA combines a speculative informa-
tion flow control scheme with a set of secure performance optimizations, allowing it to protect data
in both memory and—optionally—registers at tenable overhead. At a high level, DOLMA extends
the microarchitecture to track speculative control and data dependencies, restricting execution as
needed to prevent transient operand values from affecting processor timing.

DOLMA’s key innovation is ensuring that a time slice on a core provides a unit of isolation in
the context of known transient execution attacks. By enforcing a novel principle of transient non-

observability, DOLMA can allow secure speculative access to select core-local resources (e.g., the
TLB, L1 cache, and variable-time functional units) without loss of security.

In line with prior defenses [143, 177, 259, 315, 331, 340], DOLMA’s default protection policy
assumes a processor immune to Meltdown-type attacks, and therefore only provides mechanisms
to mitigate Spectre-type attacks. However, as faulty data propagation is still possible in recent
Intel processors [229,266,297,301,303], DOLMA additionally provides a conservative policy that
extends its protections to Meltdown-type attacks.

I evaluate DOLMA on SPEC 2017 [32] in gem5 [24] and McPAT [178], using the same baseline
processor as recent solutions [315, 340]. I show that DOLMA incurs negligible (¡1%) area over-
head and improves both security and performance over the state of the art [340]. DOLMA offers
protection for data in memory at 10.2–29.7% performance overhead (energy: 10.8–29.2%), with
protection for data in memory and registers incurring 22.6–42.2% performance overhead (energy:
22.4–40.9%).

In summary, this paper makes the following contributions:

• I present a novel variant of Spectre [158] that uses a speculative store to transmit data through
the TLB, demonstrating that the state-of-the-art defense (STT [340]) is still vulnerable to arbitrary
data leakages.

• I define and enforce the principle of transient non-observability, enabling secure speculative
access to select core-local resources.

• I introduce DOLMA, the first defense to provide automatic comprehensive protection against
existing transient execution attacks for data in both memory and registers.

• I improve both state-of-the-art security and performance, mitigating all existing transient ex-
ecution attacks on data in memory at 10.2–29.7% overhead, as well as those on data in registers at
22.6–42.2% on SPEC 2017 [281].

Our implementation and evaluation infrastructure is open-source [181], including our gem5-
compatible transient execution attack suite used for penetration testing.
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2.2 Background

I first give background on speculative execution in modern out-of-order processors. I then describe
how transient (i.e., mis-speculated) execution can be exploited to leak secrets.

2.2.1 Speculative, Out-of-Order Processors

A modern out-of-order (OoO) processor fetches instructions in program order and decodes them
into micro-ops. OoO processors keep track of program order via a circular queue called the re-
order buffer (ROB). Micro-ops enter at the tail of the ROB in-order upon dispatch, and exit from
the head of the ROB in-order upon commit. However, rather than waiting for all elder micro-ops to
retire, micro-ops in the ROB issue (i.e., begin executing) as soon as their operands become ready—
potentially out of program order. Thus, OoO processors avoid idle execution units, exploiting
instruction-level parallelism to improve efficiency over in-order processors.

To further improve efficiency, processors implement control-flow and data-flow speculation
to avoid pipeline stalls. For example, the branch prediction unit (BPU) avoids stalls at fetch via
control-flow speculation on a branch’s target address (i.e., the next program counter) prior to branch
resolution. The memory dependency unit (MDU) helps avoid stalls at issue via data-flow specula-
tion on when a load with ready operands can bypass an elder store with unresolved operands.

Additionally, numerous modern processors do not handle exception-like conditions until the
associated micro-op reaches commit, thereby implementing exception speculation. Specifically,
these processors allow read micro-ops (e.g., loads) to broadcast their results to their dependants
regardless of potential exceptions (e.g., permission faults).

In the event of mis-speculation, the processor must be able to revert to non-speculative state
in order to maintain program correctness. Thus, when the processor detects mis-speculation for a
given micro-op, younger entries in the ROB are squashed, meaning their effects will never become
architecturally-visible. If necessary, the mis-speculated micro-op is re-issued according to non-
speculative state, and execution resumes on the correct path.

2.2.2 Transient Execution Attacks

Squashing ensures that transient execution does not become architecturally-visible. However, the
microarchitectural effects of transient execution may still be visible, depending on the processor
implementation. Thus, under certain conditions, attackers can exploit covert timing channels to
leak data.

Meltdown-type attacks. Meltdown [179] and similar exploits [35,227,229,266,268,283,296,
297, 301, 302, 316] exploit exception speculation to leak data. By allowing data propagation to
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1 // assume probe_array is flushed from cache
2 // speculatively access secret (will fault)
3 secret_byte = *kernel_addr;
4 // transmit by caching dependent element
5 tmp = probe_array[secret_byte * 512];
6 ...
7 // later in code, after recovering from fault
8 // infer secret via min time index (cached)
9 for (guess = 0; guess < 256; guess++) {

10 start_time = rdtscp();
11 tmp = probe_array[guess * 512];
12 times[guess] = rdtscp() - start_time;
13 }
14 secret = get_min_index(times);

Listing 2.1: Pseudocode for Meltdown [179]. The attacker exploits delayed fault handling to
speculatively transmit kernel data via the D-cache timing side channel.

proceed until the exception is handled at commit, processors present a transient attack window
during which hardware protections can be bypassed. Attackers ensure that the sensitive data can
be later inferred—in spite of squashing—by transmitting the value through microarchitectural state
that is not reverted during squashing (e.g., D-cache lines).

A simplified version of Meltdown is shown in Listing 2.1. Key to the attack is the probe array,
which the userspace attacker flushes from the D-cache prior to the attack. During the transient
execution window (starting at line 3), the attacker is able to load a kernel value due to delayed
exception handling. The attacker then uses that kernel value as an index into the probe array,
loading the corresponding element into the cache (line 5). Since the cache update is not reverted
during squashing, the attacker can later infer the secret value by timing access to each element in
the probe array (lines 9–13). The element that is accessed most quickly corresponds to a cache hit,
revealing the secret value (line 14).

The recent MDS attacks [35, 266, 301, 302, 303] similarly exploit exception speculation to leak
data. However, unlike Meltdown, the address of the data leaked during transient execution does not
necessarily correspond to the faulty load’s address. Rather, the processor transiently forwards in-
flight data: either arbitrary data, or data whose address matches a subset of the faulty load’s address
bits. CrossTalk [245] builds upon MDS primitives to leak data through the so-called staging buffer

on Intel CPUs (shared amongst all cores).
Prior work [315, 327, 331] has additionally theorized that various hardware events (e.g., inter-

rupts, microcode assists, Intel TSX transaction aborts, etc.) could produce dangerous transient
behavior in a similar way to microarchitectural exceptions. Indeed, during the revision of this
paper, the TAA [266, 301] variants of MDS attacks exploited TSX transaction aborts. I consider
these events to be special types of microarchitectural exceptions, where all micro-ops succeeding
the event should be considered faulty until the processor pipeline is flushed.

Spectre-type attacks. Spectre [158] and similar exploits [22, 45, 156, 158, 164, 191, 194, 226,
267] do not rely on exception speculation, but rather solely exploit control-flow or data-flow spec-
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1 // victim code, mispredicted branch
2 if (some_condition) {
3 // speculatively access secret
4 secret_byte = *secret_addr;
5 // transmit by caching dependent element
6 tmp = probe_array[secret_byte * 512];
7 }

Listing 2.2: Pseudocode for Spectre [158]. The attacker exploits a misprediction in victim code to
speculatively transmit victim data via the D-cache timing side channel.

ulation arising from hardware prediction units to leak data. Prior to prediction resolution, a Spectre

gadget transiently executes, transmitting data through a covert channel. The attacker later recovers
the value using techniques similar to those in Meltdown.

A simplified version of Spectre is shown in Listing 2.2, also using the D-cache as the transmis-
sion channel. As in Meltdown, the attacker relies on a probe array to help leak the secret value.
For simplicity, the attacker and victim share access to the probe array in our example. However, I
note that the attacker and victim arrays can be at different physical (and virtual) memory locations;
the arrays must merely compete for the same cache lines.

The attacker trains the victim code to transiently jump from a branch (line 2) to a vulnerable
gadget (lines 3–6). The branch condition does not have to be related to the secret, and the gadget
can be anywhere in the program; for simplicity, I show the gadget in the body of the mispredicted
branch. Inside the gadget, vulnerable victim code accesses a secret byte (lines 4), uses the secret as
an index into the probe array (line 6), and loads the corresponding element into the D-cache (line
6). The attacker later times access to each probe array element to retrieve the secret value.

Notably, recent exploits [268, 297] demonstrate that transient execution attacks may combine
delayed exception handling and explicit hardware mispredictions to leak data. Because these ex-
ploits still rely on exception-like conditions, I consider them to be Meltdown-type, not Spectre-
type.

2.3 Problem

Providing secure speculative execution requires that a processor does not leak transient operand
values. In this section, I show that no existing defense satisfies this requirement, due to design
flaws and security-performance trade-offs.

2.3.1 Cache-Centric Defenses

Since the majority of transient execution attacks leak data through the D-cache, early defenses have
focused on the D-cache transmission channel [2, 143, 177, 255, 258, 259, 331]. Though effective in
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1 // victim code, mispredicted branch
2 if (some_condition) {
3 // speculatively access secret
4 secret_byte = *secret_addr;
5 // transmit by updating TLB via store
6 probe_array[secret_byte * 4096] = tmp;
7 }

Listing 2.3: Pseudocode for the access and transmit phases of a new Spectre [158] variant that
leaks data through the D-TLB using a store micro-op.

protecting this channel, these works do not mitigate numerous other covert channels [22, 34, 196,
245, 267, 298, 327].

2.3.2 Memory-Centric Defenses

Recent solutions [17, 315, 340] acknowledge the shortcomings of cache-centric defenses, and in-
stead focus on automatically preventing the speculative transmission of secrets via any covert chan-
nel. However, these solutions only protect data that is speculatively-accessed (e.g., loaded from
memory during speculation); they fail to provide comprehensive protection for data in registers at
the beginning of the speculation window.

In a transient execution attack on memory, prior work [154,267,315,340] notes that the attacker
relies on a two-step Spectre gadget; the gadget first accesses the secret by loading it into a register,
and then transmits the secret via a dependent micro-op whose execution yields operand-dependent
timing variations. Thus, attackers seeking to exploit victim programs rely on the presence of such
two-step gadgets in the victim binary.

However, in the case of an attack on an unprivileged (e.g., general-purpose) register-based
secret, the access step can be performed non-speculatively (e.g., the victim loads the secret into
the register file prior to the beginning of the speculation window). Thus, if the attacker wishes to
leak this register-based secret, they only need to execute the transmit portion of the classic Spectre
gadget (line 6 of Listing 2.2). A “register” Spectre gadget is therefore embedded within every
“memory” Spectre gadget, meaning there are at least as many register Spectre gadgets as there

are memory Spectre gadgets.
Despite the risk of register leakages, automatic defenses [17, 340] are often only evaluated

on protecting memory-based secrets, as a security-performance trade-off. An exception to this—
NDA [315]—demonstrates that adding just partial protection for data in registers raises overhead
from 22.3–100% to 45–125% on SPEC 2017 (depending on the threat model).
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Figure 2.1: Leaking a speculatively-accessed secret through the D-TLB—despite enabling
STT [340] protection—via a speculative store in the gem5 simulator [24].

2.3.3 Attacking the State of the Art

The current state-of-the-art defense, STT [340], introduces the concept of speculative taint track-
ing to protect speculatively-accessed data during transient execution. In this section, I show that
arbitrary data can still be leaked in spite of STT.

Despite existing transient attacks exploiting speculative stores [35, 228, 291, 303], STT in-
correctly assumes that prohibiting store-triggered speculative cache coherency invalidations is
sufficient to prevent transmission via stores in isolation [291, 340]. However, while stores
might not speculatively modify cache state on many processors, stores can still leak informa-
tion via the TLB—including on the processor used in STT’s evaluation—among other chan-
nels [24, 35, 40, 340].

As a result of this erroneous assumption, STT does not comprehensively prevent transient ex-
ecution attacks that use stores to transmit a secret-dependent address, whether Spectre-type or
Meltdown-type. Here, I demonstrate the most straightforward store-based exploit for brevity. I
defer discussion of an additional, more subtle vulnerability in STT to DOLMA’s design (§2.5.4).

Listing 2.3 displays the pseudocode for a novel Spectre variant that uses a transient store to leak
data through the D-TLB, building on prior work [86] exploiting the TLB side channel. Inside the
Spectre gadget (lines 3–6), vulnerable victim code accesses a secret byte (lines 4), uses the secret
as an index into the probe array (line 6), and speculatively stores the corresponding address in the

TLB (line 6). The attacker later recovers the secret using aforementioned techniques.
The result of running this attack with STT’s protections enabled atop our baseline version of

the gem5 simulator [24] is shown in Fig. 2.1. As pictured, the Spectre variant clearly leaks the
secret byte (42). Thus, arbitrary data can be leaked during transient execution on STT-protected

processors.
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2.4 Scope of Protection

DOLMA considers an attacker exploiting transient execution to leak secrets (i.e., data) through
any covert timing channel. DOLMA does not consider non-speculative side channels [70, 71, 89,
243,332,333], nor side channels that require physical access to the machine during the attack (e.g.,
power [159] and EM [223]). While physical side channels are viable sources of leakage, timing
channels currently expose a larger threat surface, as they are remotely-exploitable.

DOLMA offers two protection policies, based on the processor’s implementation of speculative
execution. Technically-speaking, all micro-ops are speculative until they reach the head of the re-
order buffer (ROB), at which point they are guaranteed to not be squashed. However, depending
on the microarchitecture, not all speculation can leak secrets. For simplicity, in the rest of this
text, I assume that “speculation” refers to the subset of speculation that poses a security threat. I
precisely define the speculative scenarios under consideration in each protection policy.

DOLMA’s protection policies can additionally be tuned based on the data that the user wishes
to protect. For instance, if the user only wishes to protect speculatively-accessed data (e.g., data
in memory at the beginning of the speculation window, as opposed to data already loaded into
registers), they may disable a subset of DOLMA’s protections accordingly.

2.4.1 DOLMA-Default

DOLMA-Default assumes that the processor inherently mitigates all Meltdown-type attacks by pre-
venting potentially faulty micro-ops from broadcasting (i.e., propagating) their results to dependent
micro-ops. Therefore, DOLMA-Default only addresses Spectre-type attacks.

DOLMA-Default considers all hardware prediction units (e.g., units that speculate on control
dependencies or data dependencies) to be sources of speculation. Thus, DOLMA-Default considers
any micro-op fetched (control dependency) or issued (data dependency) as a result of a hardware
prediction unit to be a potential source of leakage. While the exact units are implementation-
specific, I detail generalizable considerations for both a typical control-flow prediction unit (the
branch prediction unit) and a typical data-flow prediction unit (the memory dependency unit).

Branch Prediction Unit (BPU). The BPU can induce transient execution in three scenarios.
First, the BPU can mispredict whether a branch is taken, as shown in Fig. 2a. Second, the BPU
can mispredict the target of the branch. Thus, DOLMA-Default must prevent information leakages
stemming from micro-ops following a branch in the ROB, until the prediction resolves as correct
or the processor squashes.

In the third scenario, the BPU can mispredict a non-branch to be a branch (i.e., before decoding
the non-branch’s opcode, the BPU mispredicts that the instruction is a branch and fetches from
the wrong address). However, because the misprediction is realized at decode (an in-order stage),
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Figure 2.2: Examples of transient execution arising from hardware mispredictions in the (a) branch
prediction unit (BPU) and (b) memory dependency unit (MDU).

the younger (transient) micro-ops can be squashed prior to operand resolution. Thus, operand-
dependent timing variations are not possible.

Memory Dependency Unit (MDU). The MDU can induce transient execution for one or two
reasons, depending on the memory consistency model: speculative store bypass (SSB) and specu-
lative load bypass (SLB).

Speculative Store Bypass (SSB): The MDU may induce transient execution by allowing a load
to bypass an earlier, unresolved store [226, 331], as shown in Fig. 2b. If the store resolves to an
address used by the load, the load and its dependants must be squashed. Accordingly, DOLMA-

Default must prevent leakages stemming from any load-dependent micro-ops, until all prior stores
resolve.

Notably, DOLMA-Default need not prevent leakages stemming from the load itself in bypass
scenarios, unless the load is already under consideration (e.g., due to following an unresolved
branch). To understand this intuition, I consider the two possible scenarios for a speculative store
bypass attack. First, the load can be used to access a secret in memory. In this case, the load relies
on a dependent micro-op to transmit the secret, meaning the load itself need not be considered.

Second, the load can be used to leak the (register-based) load address, which is presumed to be
a secret. However, speculation does not change the load’s address; it only potentially changes the
value returned by the load. Even if the load is mispredicted, it will be re-executed with the same
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operand—the secret. Thus, this scenario is a non-speculative side channel, and is explicitly outside
of DOLMA’s threat model.

Speculative Load Bypass (SLB): The MDU may induce transient execution for a second reason
in memory consistency models that enforce a form of total store ordering. In such models, transient
execution can arise when a younger load bypasses an elder, unresolved load [259, 327]. If the
elder load resolves to an address used by the younger load—and the cache line for the address
is invalidated in the interim—the younger load and its dependants must be squashed to enforce
memory consistency.

DOLMA-Default only considers dependent micro-ops of SSB loads, and not the dependants of
SLB loads. SSB allows a single thread of execution to transiently read secrets explicitly overwritten
in program semantics, posing an obvious security threat. On the other hand, an SLB load only reads
stale data if the cache line is invalidated by another core. For memory shared among cores, such
writes could occur at an arbitrary time. Thus, the programmer cannot assume the stale data has been
overwritten before these loads execute, and must therefore reason about the safety of dependent
micro-ops irrespective of speculation. As such, DOLMA-Default does not consider dependants of
SLB loads.

2.4.2 DOLMA-Conservative

Despite the existence of a comprehensive solution for all Meltdown-type attacks (namely, prevent-
ing data propagation in the presence of potential microarchitectural exception-like conditions),
faulty data propagation is still possible in recent Intel processors [229, 266, 297, 301, 303]. There-
fore, DOLMA-Conservative assumes that loads and load-like privileged register reads can tran-
siently bypass exception-like conditions, inducing exception speculation until they retire. Thus,
in addition to the speculation considerations of DOLMA-Default, DOLMA-Conservative prevents
leakages stemming from all dependants of a load-like micro-op, until the load-like micro-op retires.

2.4.3 Simultaneous Multi-Threading

In the context of transient execution attacks, simultaneous multi-threading (SMT) can be used
to access secrets (e.g., MDS attacks [35, 266, 301, 302, 303] can access secrets from a sibling
logical core) or to transmit secrets (e.g., SMotherSpectre [22] can transmit a secret via issue port
contention between attacker and victim sibling logical cores). Under DOLMA as well as prior
speculative information control flow defenses [17,315,340], SMT accesses are safe, provided that
the accessed data cannot modify a transmission channel (e.g., the D-cache) as a function of its
value during speculation.
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This leaves the question of how to deal with speculative SMT transmission channels. SMT
contention creates a myriad of potential transmission channels—both speculative and non-
speculative—via resource contention for core-local resources such as the TLB, L1 cache, and
each functional unit. Thus, in the presence of SMT, prior work makes the performance-inhibiting
assumptions that (1) all unsafe TLB/L1 accesses must be delayed, and (2) no unsafe micro-ops
may use fast-path optimizations (e.g., variable-time arithmetic) [17, 315, 340].

However, DOLMA shows that these assumptions are unnecessary in the context of existing
transient execution attacks. Even without DOLMA, potential SMT transmission channels are com-
paratively difficult to exploit in production environments. Namely, the attacker and victim must
be co-scheduled on the same physical core and contend for the same secret-dependent resource
on the exact same processor cycle. Indeed, unlike notoriously-reliable channels such as the D-
cache [35,45,156,158,164,179,191,194,226,227,229,264,266,283,291,296,297,297,301,302,
303,316, 326], speculative transmission via SMT contention has only been demonstrated by a sin-
gle attack (SMotherSpectre [22]). Nonetheless, I show that DOLMA’s design naturally mitigates
SMotherSpectre in §2.5.4.

2.5 Design

DOLMA has two primary goals. First, in the context of each protection policy, the value of a
transient operand (i.e., an operand of a micro-op that will be squashed) cannot affect the timing of
non-transient micro-ops. Second, in order to make such security tenable for real-world systems,
DOLMA must incur as little performance overhead as possible.

At a high level, DOLMA adds state to track the speculation status of each micro-op in the
re-order buffer (ROB). DOLMA then uses this state to restrict (e.g., delay) execution, such that
transient operands cannot observably affect timing.

Given the overhead of related defenses [17, 315, 340], DOLMA’s key contribution is enforcing
a novel principle of transient non-observability that obviates the need to delay execution in certain
contexts. In doing so, DOLMA enables protection to scale to registers with tenable performance
overhead.

In this section, I first introduce the principle of transient non-observability (§2.5.1). I then
provide the classifications for micro-ops that DOLMA uses to enforce this principle (§2.5.2).
With these definitions, I explain DOLMA’s optimizations for traditional sources of transmission
(§2.5.3). I subsequently identify a remaining vulnerability in the state of the art [340] and present
DOLMA’s mitigations for this and related channels (§2.5.4). Finally, I specify the microarchi-
tectural state and logic used to appropriately restrict speculative execution (§2.5.5) and lift these
restrictions when speculation resolves (§2.5.6).
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2.5.1 Transient Non-Observability

To prevent transmissions of secrets, DOLMA enforces a novel principle of transient non-

observability. With regards to DOLMA’s timing channel protection policies, transient non-
observability is achieved by ensuring that the value of a transient (i.e., destined to squash) operand
cannot affect the cycle upon which a non-transient micro-op commits—thereby preventing timing-
based leakages.

More precisely, transient operand values must not cause timing variations in non-transient
micro-ops via (a) out-of-order contention for core-local resources, (b) simultaneous uncore/offcore
resource access, or (c) persistent state modifications—i.e., modifications that survive the transient
window. Notably, such leakages can occur both via data flows (e.g., a specific microarchitectural
buffer entry is accessed/modified based on a secret operand) or control flows (e.g., state is only
modified on a conditional path, revealing the value of a secret conditional predicate).

In this sense, DOLMA’s principle of transient non-observability is similar to the principle
of speculative non-interference [93, 340, 341]. The key difference is that prior work assumes
all operand-dependent timing variations (e.g., variable-time arithmetic and TLB/cache accesses)
are inherently unsafe, as an SMT adversary (i.e., an adversary executing simultaneously on
the same physical core) can observe these variations via core-local contention. This limitation
yields designs that stall all variable-time micro-ops until speculation resolves, inhibiting perfor-
mance [17,315,340]. However, as I will demonstrate (§2.5.4), DOLMA naturally mitigates SMoth-
erSpectre [22]—the only transient execution attack to have demonstrated transmission via SMT
contention—enabling a set of secure performance optimizations over prior work.

2.5.2 Micro-op Classification

Inducive and Resolvent Micro-ops. In order to identify the beginning and end of each speculation
window, DOLMA requires the manufacturer to denote a set of inducive and resolvent micro-ops.
An inducive micro-op is any micro-op that can induce speculation, such as a control-flow micro-
op (branch prediction) or a load (memory dependency prediction, value prediction, etc.). More
specifically, a control-flow micro-op—or branch—is any micro-op that can explicitly alter program
control flow (e.g., a jump, call, or return); branch prediction encompasses the BPU structures used
to predict the result of these micro-ops (e.g., the branch history table [BHT], branch target buffer
[BTB], and return stack buffer [RSB]).

A resolvent micro-op is any micro-op that can resolve speculation. Note that the same micro-op
can induce and resolve a speculation window (e.g., a control-flow micro-op induces speculation at
fetch and resolves speculation at execute). In other cases, a speculation window can be induced
and resolved by different micro-ops (e.g., memory dependency speculation is induced by loads and
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resolved by stores).
Given a specific microarchitecture, enumerating inducive and resolvent micro-ops is trivial: the

manufacturer must already define an exhaustive list of these micro-ops in order to implement their
processor according to its ISA specification. If the manufacturer were to omit such a micro-op,
transient micro-ops would be able to retire their effects to architectural state, violating the ISA
specification and thus program correctness.

Unsafe Micro-ops. In DOLMA, unsafe micro-ops are speculative micro-ops whose operand
values can be transmitted during transient execution via corresponding timing variations. Unsafe
micro-ops can be further classified as backend-unsafe (e.g., loads can transmit through backend
channels such as the D-cache), frontend-unsafe (e.g., control-flow micro-ops can transmit through
frontend channels such as the BTB), or both.

Because DOLMA considers timing channels, micro-ops are only classified as unsafe in the
context of timing leakages. However, mitigating other operand-dependent channels would simply
require the manufacturer to denote additional micro-ops as unsafe (e.g., via microcode updates).

While the exact set of unsafe micro-ops is microarchitecture-specific, I discuss common exam-
ples in modern processors. I precisely define the set of unsafe micro-ops for the microarchitecture
used in our evaluation in §2.7, manually enumerating this set using the aforementioned criteria
for transient non-observability (i.e., operand-dependent out-of-order contention for core-local re-
sources, simultaneous uncore/offcore resource access, and persistent state modifications). Notably,
this set includes all micro-ops classified as high covert channel risk (CCR) in prior work [17]. Fur-
thermore, unlike the state of the art [340] evaluated on the same processor, DOLMA’s set of unsafe
micro-ops includes all applicable micro-ops whose operands are leaked in documented transient
execution attacks.

For an arbitrary microarchitecture, exhaustively identifying unsafe micro-ops requires a formal
timing analysis of the RTL code, and is ongoing work. The state of the art [83] requires the pro-
grammer to manually annotate portions of the circuit description, limiting scalability to modern
processors. Therefore, formal verification of DOLMA’s security on an arbitrary processor neces-
sitates advancements in these methods.

2.5.3 Optimizations for Traditional Backend Channels

Existing speculative information flow control defenses [17, 315, 340] delay all unsafe micro-ops
until speculation resolves. In select cases, DOLMA likewise delays unsafe micro-ops. However,
DOLMA’s principle of non-observability—combined with minor modifications to the processor—
allows a restricted form of speculative execution in two key scenarios. I describe the optimizations
here, and show that they do not directly produce backend timing variations. I demonstrate that the
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optimizations cannot influence frontend state (and thus, cannot indirectly produce backend timing
variations) in §2.6.

Variable-Time Execution. On a traditional processor, all micro-ops that vary execution time
as a function of their operands would be unsafe. While many micro-ops only produce core-local
modifications that are reverted upon squashing, they may still alter the cycle upon which other
micro-ops retire due to out-of-order contention for core-local resources.

More precisely, the operand-dependent contention produced by variable-time computation is
problematic when it occurs between a younger (transient) micro-op and an elder (non-transient)
micro-op. While the pipeline frontend is in-order, such out-of-order contention is indeed possible
in the processor backend (i.e., issue and onwards).

Accordingly, to obviate unsafe backend contention, DOLMA employs a simple policy. At a
high level, DOLMA’s strategy is to ensure that—when an elder and younger micro-op compete for
the same backend resource—the elder micro-op is unconditionally granted access to the resource.
While I cannot list every possible example of backend contention, I describe our techniques for
issue and writeback ports that generalize to other contention sources.

At issue, elder micro-ops can forcibly evict younger (unsafe) micro-ops from execution units
when no units would otherwise be available; the younger micro-ops are then re-issued once safe.
At writeback, a priority queue ensures that the eldest micro-ops obtain access to writeback ports
each cycle. That is, if there are P ports and N micro-ops ready to writeback (where N > P ), the
P eldest micro-ops obtain the ports.

With this policy, the operands of variable-time micro-ops are transiently non-observable if they
(a) do not affect uncore/offcore resource accesses, and (b) do not produce operand-dependent per-
sistent state modifications. Although these criteria conventionally include variable-time ALU
micro-ops, other micro-ops clearly remain unsafe, even if core-local. For example, NetSpec-
tre [267] shows that AVX micro-ops reset a persistent powerdown timer upon execution, mean-
ing (operand-dependent) timing variations in AVX execution would ultimately produce (operand-
dependent) persistent modifications. Thankfully, in such cases where updates are off the criti-
cal path (i.e., not required for the speculative computation), DOLMA can mitigate the channels
without performance loss by only performing the updates upon commit. I discuss how DOLMA
prevents leakages via conditional (e.g., control-dependent) usage of resources like the AVX pow-
erdown timer in §2.5.4.

Delay-on-Miss. Memory micro-ops (loads and stores)—produced by a variety of high-level
instructions [245]—pose a greater challenge, as they can both access uncore/offcore resources
and produce persistent state modifications that greatly affect performance. For example, mem-
ory micro-ops can produce speculative, operand-dependent contention for or modifications to the
D-TLB, D-cache, load-store queue, memory dependency unit, prefetching infrastructure, global
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staging buffer, and associated metadata for these structures (e.g., replacement policy data). Thus,
speculative memory micro-ops would normally be unable to execute without leaking secrets. How-
ever, it is possible to avoid delaying memory micro-ops in the common case without loss of secu-
rity.

DOLMA novelly applies the technique of “delay-on-miss” [259] to speculative stores, building
on prior work that uses delay-on-miss to achieve efficient protection for speculative loads. At a
high level, delay-on-miss allows speculative memory micro-ops that hit in first-level core-local
structures (e.g., the L1 TLB and—in the case of loads—L1 cache) to execute without stalling
until speculation resolves. A speculative memory micro-op that misses in these structures vacates
its execution unit and is placed into a dedicated stall queue (as can already be done to mask the
latency of TLB misses/page table walks). Such a design allows other in-flight memory micro-ops
to proceed with execution. When speculation resolves, the stalled memory micro-op is re-issued
without restriction.

Importantly, DOLMA ensures that memory micro-ops do not affect replacement policy meta-
data or memory dependency predictions until speculation resolves, thereby eliminating these po-
tential channels. Furthermore, if a speculative memory micro-op triggers a prefetch, the prefetch is
likewise constrained to delay-on-miss behavior. Finally, because only core-local memory micro-
ops are legal, the global staging buffer cannot be altered. Thus, delay-on-miss prevents transmis-
sion at two levels: the explicit channels of speculative modifications to TLB and cache entries, as
well as more subtle channels of speculative updates to associated state.

2.5.4 Mitigating Remaining Sources of Transmission

Store-to-Load Forwarding. As noted in prior work [340], store-to-load forwarding provides an
additional source of backend leakage for memory micro-ops. If a load has a complete match with
an unsafe store in the store buffer, the load will not issue a memory request, and will instead use
the data from the store buffer. Thus, the decision to (not) issue a memory request reveals the store’s
address operand.

DOLMA’s contribution in this regard is to identify and address another source of leakage via
store-to-load forwarding. Namely, prior work [340, 342] does not handle the case of a partial
hit (i.e., where a strict subset of the load’s address range is found in the store buffer), instead
erroneously assuming that the only two possible cases are a complete hit or miss. However, in
the case of a partial hit, neither the store buffer nor lower levels of the memory hierarchy hold the
correct data in its entirety. Thus, depending on how the microarchitecture handles partial hits, the
load may stall until the store completes, revealing information about the store’s address via timing.

Fortunately, combined with DOLMA’s protections for variable-time execution, the same pro-
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Figure 2.3: Without DOLMA (left), the processor speculatively redirects fetch from A to B, de-
pendent upon a transient predicate value. With DOLMA (right), speculative fetch redirects are
blocked until speculation resolves (C), thereby preventing predicate-dependent execution. Dashed
lines indicate predictions, while solid lines indicate fetch redirects.

tection mechanism works for both total and partial store buffer hits in the presence of stalling.
That is, the processor unconditionally issues the load to the cache hierarchy, and simply ignores
the response in the event of an unsafe buffer hit. If the hit was partial (meaning the buffer does not
contain all necessary data), the load re-issues once the store is safe and complete.

Speculative Fetch Redirects. Control-flow micro-ops and any remaining inducive/resolvent
micro-ops provide common examples of frontend-unsafe micro-ops, because these micro-ops can
leak their operands via speculative fetch redirects [340], as shown in Fig. 2.3. For instance, if
a speculative (e.g., nested) control-flow micro-op resolves as incorrect, the micro-op must signal
to the frontend to redirect fetch to the appropriate program counter. However, the new PC is
determined by the control-flow micro-op’s predicate, meaning such a redirect leaks the predicate
via dependent updates to frontend covert timing channels (e.g., the I-TLB, I-cache, and BPU), as
well as potential backend covert channels (e.g., resets of the AVX powerdown timer via subsequent
conditional execution [267]).

Like the state of the art (STT [340]), DOLMA additionally provides protection against more
subtle sources of speculative fetch redirects. Consider the case of redirects caused by memory
ordering violations (i.e., load-store aliasing, where an inducive load incorrectly bypasses an unre-
solved store). Such a redirect can reveal information about the load’s address operand (namely,
that it conflicted with that of a prior store). Thus, the redirect is clearly unsafe while the load
itself is unsafe . However, even if the younger load is safe (for instance, not dependent upon any
inducive loads), the elder store can still be unsafe. Accordingly, a redirect in this scenario leaks
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Figure 2.4: Comparing DOLMA-Default’s and DOLMA-Conservative’s handling of speculation
status in the ROB in three scenarios. U = Unresolved, C = Control-Dependent, D = Data-
Dependent, and P = Pending-Redirect. Example (a) shows a non-retired load. Example (b) shows
an unresolved speculative store bypass. Example (c) shows an unresolved branch, with a nested
branch blocked due to a speculative fetch redirect (line c5).

the store’s address operand in an identical fashion to that of an unsafe load and must likewise be
delayed. Although STT’s implementation code [342] allows the redirect before the store is safe, I
note that STT’s design correctly mentions the need to delay such redirects until both the load and
store are safe [340].

By comprehensively prohibiting speculative fetch redirects, DOLMA mitigates all channels
that rely on conditional transient execution to leak data (e.g., the AVX powerdown timer [267]).
Notably, this protection likewise mitigates SMotherSpectre [22], the only transient execution attack
to have demonstrated transmission via SMT contention. In order to create reliable contention on
issue ports, SMotherSpectre uses a secret-dependent speculative redirect to fetch and issue micro-
ops. In the context of Fig. 2.3, the speculative redirect is performed based on the secret being zero
or non-zero. When the fetched micro-ops (either A or B) reach issue, they compete with micro-ops
from the adversary’s sibling logical core for different ports. However, the specific ports contended
depend on the (different) opcodes between A and B, thereby revealing the secret value. Under
DOLMA, this and similar scenarios are impossible, as speculative fetch redirects are prevented.

2.5.5 Enforcing Restrictions

Both DOLMA-Default and DOLMA-Conservative must restrict unsafe micro-ops that are control-
dependent or data-dependent upon inducive micro-ops, delaying unsafe micro-ops that would pro-
duce observable modifications to the microarchitecture. As previously-mentioned, branch spec-
ulation provides an example of control-dependency restriction: any unsafe micro-op following a
branch (e.g., jump, call, or return) in the ROB must be restricted. Memory dependency speculation
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provides an example of data-dependency restriction: DOLMA-Default must restrict the dependants
of loads that bypass stores during execution. DOLMA-Conservative expands this mechanism to all
loads (and load-like privileged register reads) in order to additionally handle exception speculation.

In order to track the speculation status of each micro-op in the pipeline, DOLMA conceptually
extends each ROB entry with four bits, as shown in Fig. 2.4: Unresolved, Control-Dependent,
Data-Dependent, and Pending-Redirect. If a micro-op is squashed, the extra bits are ignored.

Unresolved. DOLMA marks an inducive micro-op as unresolved until (a) its associated specu-
lation window resolves, and (b) all elder micro-ops are also resolved. Assuming all elder micro-ops
are resolved, a control micro-op resolves when it is executed. Under DOLMA-Default, loads are
only inducive if they are issued as a result of a hardware prediction unit (e.g., speculative store
bypass). Thus, such loads resolve when the corresponding prediction resolves (e.g., the bypassed
store executes). Under DOLMA-Conservative, all load-like micro-ops are assumed to be unre-
solved until they retire, in order to handle exception speculation.

Control-Dependent and Data-Dependent. Speculative control dependencies can be easily
tracked in DOLMA: any micro-op following an unresolved branch in the ROB is control-dependent
on that branch, until the next branch introduces a new set of control dependencies.

Like prior work [340], DOLMA tracks speculative data dependencies via the register rename
table. In particular, if a micro-op X consumes the output of an inducive micro-op (or its depen-
dants), then DOLMA marks X as data-dependent. Data dependency status is propagated during
broadcast (i.e., wakeup of dependent micro-ops).

Notably, reservation station entries for unsafe micro-ops are also extended with the OR of their
micro-op’s control-dependent and data-dependent status bits. The processor uses this signal to
ensure that unsafe micro-ops do not transmit information. For instance, outgoing memory requests
are tainted for unsafe micro-ops, such that the L1 cache will know to return without fetching
from L2 upon a miss. As another example, DOLMA uses the dependency status—along with
ordering information from the ROB—to prevent unsafe backend contention (e.g., issue/writeback
port contention between elder micro-ops and younger unsafe micro-ops).

When an unsafe micro-op is issued, a copy of its issue queue entry is placed into a dedicated
unsafe queue for in-flight unsafe micro-ops. If an unsafe micro-op executes without stalling, its
unsafe queue entry is freed. For unsafe micro-ops that cannot complete for safety reasons, each
queue entry holds the index of its youngest unresolved inducer. Such a design allows for efficient
wakeup when the micro-op becomes safe [340]. Specifically, if a stalled micro-op’s youngest
inducer is resolved, the inducer broadcasts its ROB index to this queue such that dependent micro-
ops are marked as ready to issue.

Pending-Redirect. Finally, when a frontend-unsafe micro-op would initiate a fetch redirect, its
ROB entry is instead marked as pending-redirect. Like backend-unsafe micro-ops, the frontend-
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unsafe micro-op also vacates its execution unit and awaits a safety broadcast.

2.5.6 Clearing Speculative Status

DOLMA only clears micro-ops when they become non-speculative in the context of DOLMA’s
threat models. For control-dependent micro-ops, this means that all elder control-flow micro-ops
must be resolved. For data-dependent micro-ops, this means that all elder loads and associated
resolvent micro-ops (e.g., stores) must be resolved.

When stalled backend-unsafe micro-ops are cleared, they are marked as ready to re-issue from
the stall queue. When pending frontend-unsafe micro-ops are cleared, they signal their delayed
redirect. Cleared micro-ops compete with the regular stream of micro-ops for backend ports. As
previously stated, elder micro-ops are given preference during (re-)issue; however, DOLMA does
not increase the issue width.

2.6 Security Analysis

The goal of our supplemental security analysis is to show that the optimizations afforded by our no-
tion of non-observability do not introduce speculative timing channels in the context of DOLMA’s
protection policies. I base our reasoning on features of the baseline processor [24, 139] used in
similar defenses [315, 340] (including our own), and argue that the same logic can be applied to
any microarchitecture satisfying the general properties I describe here.

DOLMA introduces two optimizations due to non-observability. First, DOLMA allows for
variable-time arithmetic. Second, DOLMA uses delay-on-miss [259] for speculative loads and
stores. I demonstrated that these optimizations cannot directly produce timing variations in pro-
cessor backend state in §2.5. Here, I demonstrate that transient execution cannot influence fron-
tend timing on a DOLMA-protected processor (and thus, cannot indirectly produce backend timing
variations).

Proof Sketch. On our processor, four events can influence frontend state on any given cycle. I
show each event is invariant of transient values in the context of DOLMA’s protection policies.

(1) Backend Redirect: The backend can redirect fetch to a new PC as a result of a predicate
resolution (e.g., branch or memory dependency). DOLMA delays fetch redirects until speculation
resolves, meaning transient micro-ops in the backend cannot initiate a fetch redirect. Furthermore,
since elder micro-ops are given preference for backend resources, a transient micro-op cannot
affect the length of the speculation window (and thus, cannot influence the cycle upon which a
backend redirect is performed). Thus, backend fetch redirects are invariant of transient data.

(2) Frontend Redirect: The frontend can redirect fetch to a new PC as a result of a branch
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Figure 2.5: A simplified example of how a pipeline backup can cause the fetch buffer to fill.

prediction. Since DOLMA delays fetch redirects until speculation resolves, DOLMA prevents
transient data from entering the BPU. Thus, frontend fetch redirects are invariant of transient data.

(3) Full Fetch Buffer: The processor may not increment the PC on a given cycle if the fetch
buffer (i.e., the buffer for fetched instructions, before they are decoded and inserted into the ROB)
is full. Delaying fetch redirects until speculation resolves—coupled with giving elder micro-ops
priority in the backend— prevents transient operands from affecting the the processor frontend
state (including the fetch buffer). Thus, it suffices to show that transient micro-ops cannot indirectly
influence the state of the fetch buffer via a pipeline backup.

I trace back from the “full fetch buffer” scenario shown in Fig. 2.5 to demonstrate that only
non-speculative micro-ops can cause the fetch buffer to fill. The fetch unit (a) fetches instructions
into the fetch buffer (b). The fetch buffer becomes full when the decode unit (c) cannot process
instructions on a given cycle. The decode unit cannot process instructions if the ROB (d) is full.
Finally, the ROB is full if the micro-op at the head of the ROB (e) cannot retire.

However, the head of the ROB is—by definition—non-speculative. Thus, this is only a concern
if younger (speculative) micro-ops prevents the head from retiring. Since DOLMA gives elder
micro-ops priority in the backend, such a scenario is impossible. Therefore, only non-speculative
micro-ops can cause the fetch buffer to fill, meaning the fetch buffer is invariant of speculative
micro-ops (f), and thus transient data.

(4) Variable Fetch Latency: The processor may not increment the PC on a given cycle if a fetch
request is delayed (e.g., due to an I-TLB or I-cache miss). Fetch latency is a function of frontend
state (e.g., the PC, BPU, I-TLB, and I-cache), which by (1)–(3), is invariant of transient data. Thus,
fetch latency is invariant of transient data.

Therefore, processor frontend state is invariant of transient operand values in the context of

DOLMA’s threat models.
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Parameter Value
Architecture x86-64 at 2.0 GHz
OoO Core (No SMT) 8-issue, 32 LQ entries, 32 SQ entries, 192 ROB entries, 4096 BTB entries, 16 RAS entries
OoO Core (2-SMT) 8-issue, 16 LQ entries per thread, 16 SQ entries per thread, 91 ROB entries per thread, 4096 BTB entries (dynamically

partitioned), 16 RAS entries per thread
L1-I/L1-D Cache 32 KB, 64B line, 8-way set associative (SA), 4 cycle round-trip (RT) latency, 1 port
L2 Cache 2 MB, 64 B line, 16-way SA, 40 cycle RT latency
DRAM 50 ns response latency

Table 2.1: gem5 simulation configuration.

2.7 Evaluation

I evaluate DOLMA’s gem5 [24] implementation against the SPEC 2017 [281] benchmark suite. I
estimate area and energy with McPAT [178], incorporating recommended changes for increased ac-
curacy [324]. I sample performance throughout each benchmark’s execution via the Lapidary sim-
ulation sampling framework [224, 225], which employs the SMARTS methodology [323]. More
specifically, Lapidary converts periodic GDB coredumps from each benchmark’s execution on real
hardware into gem5 checkpoints. Following the methodology used in NDA [315] (a prior specula-
tive information flow control defense), I configure Lapidary to warm microarchitectural structures
for 5, 000, 000 instructions before measuring the performance of 100, 000 instructions, repeated for
each checkpoint.

I evaluate DOLMA with and without simultaneous multi-threading (SMT) enabled. I generate
SMT workload pairings from the SPEC 2017 benchmarks using the “Balanced Random” method-
ology developed by Velasquez et al. [304]. This methodology ensures that each benchmark appears
an equal number of times across all pairings.

In line with prior speculative information flow control defenses [315, 331, 340], I use gem5’s
OoO processor as our baseline. The processor’s set of inducive micro-ops includes control-flow
micro-ops (i.e., jumps, calls, and returns) and loads, while its resolvent micro-ops include control-
flow micro-ops and stores. Its set of unsafe micro-ops includes control-flow micro-ops, loads,
and stores—consistent with the micro-ops identified as high covert channel risk (CCR) in prior
work [17]. The processor configuration is listed in Table 2.1.

I additionally compare the performance of DOLMA to the state-of-the-art speculative informa-
tion flow control defense, STT [340]. As STT provides memory-only protection, I extend STT
to enable optional protection for registers. I compare DOLMA to STT under both memory-only
protection modes (M) as well as memory and register (M+R) modes.

Although STT’s gem5 implementation is publicly-available [342], it was necessary to port STT
as modifications to DOLMA for two key reasons. First, STT’s baseline performance differs signifi-
cantly from that of prior speculative information flow control defenses, rendering fair comparisons
impossible. For example, I found that for the mcf benchmark, STT’s baseline yielded approx-
imately 30% higher average cycles-per-instruction compared to the baseline of NDA (and our
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Baseline OoO 0±3.8% 0±3.0%
STT-Spectre (M) 8.7±4.2% 3.2±3.2%
DOLMA-Default (M) 10.2±4.3% 3.4±3.2%
STT-Futuristic (M) 44.5±4.6% 25.5±3.6%
DOLMA-Conservative (M) 29.7±4.7% 16.2±3.5%
STT-Spectre (M+R) 30.8±5.0% 17.3±3.6%
DOLMA-Default (M+R) 22.6±4.8% 9.8±3.4%
STT-Futuristic (M+R) 63.4±5.0% 36.8±3.8%
DOLMA-Conservative (M+R) 42.2±5.4% 22.4±3.7%

Mitigates all existing attacks, except select transmissions via stores
Mitigates all existing attacks

Table 2.2: DOLMA compared to STT [340] in terms of total CPI overheads and mitigated attacks,
using memory-only protection variants (M) as well as memory and register protection variants
(M+R). Control transient execution attacks refer to transient execution arising from branch predic-
tions, differentiated by whether memory or registers are leaked. Data transient execution attacks
refer to transient execution arising from data predictions (e.g., memory dependency speculations).
Exception transient execution attacks refer to Meltdown-type attacks that exploit delayed microar-
chitectural exception handling. Overhead ranges reflect 95% confidence intervals.

own), significantly skewing results. Second, SMT support for x86-64 is not functional in the STT
prototype.

2.7.1 Performance Evaluation

Single Thread. The per-benchmark geometric mean cycles per instruction (CPI) for DOLMA-

Default and DOLMA-Conservative across SPEC 2017 are shown in Fig. 2.6, provided for both
memory-only (M) as well as memory and register (M+R) protection variants. I display these num-
bers alongside corresponding STT variants, and depict 95% confidence intervals for the reported
CPIs.

For protection against Spectre-type attacks, STT provides STT-Spectre. However, unlike
DOLMA-Default, STT-Spectre does not mitigate Spectre-type attacks exploiting data speculation,
such as speculative store bypass [226], nor various transmissions via stores. STT-Spectre (M)
incurs 8.7% overhead, while STT-Spectre (M+R) incurs 30.8% overhead. Thus, despite offer-
ing greater protection, DOLMA-Default (M) (10.2%) yields comparable overhead to STT-Spectre

(M) (8.7%), and DOLMA-Default (M+R) (22.6%) scales to registers significantly better than STT-
Spectre (M+R) (30.8%).

To provide the additional protection against Meltdown-type attacks offered by DOLMA-

Conservative, STT-Futuristic incurs 44.5% (M) and 63.4% (M+R) overhead, but fails to protect
select store-based transmissions. In contrast, DOLMA-Conservative only incurs 29.7% (M) and
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Figure 2.6: DOLMA’s single thread performance on SPEC 2017, compared to STT [340]. Error
bars depict the 95% confidence intervals.

42.2% (M+R) overhead to protect against all existing Meltdown-type and Spectre-type attacks on
data in memory and registers, respectively.

DOLMA’s ability to provide protection at lower overhead than STT primarily arises from the
use of delay-on-miss for memory micro-ops. While STT insecurely allows all speculative stores
to execute, STT conservatively delays all unsafe loads. In contrast, DOLMA only delays unsafe
loads and stores when they miss in the TLB and—in the case of loads—the L1 cache.

With SMT (2 Threads). I compare the geometric mean of total CPI overhead across 2 threads
between DOLMA and STT in Table 2.2, alongside single thread means. Reported CPIs are listed
with 95% confidence intervals. For both DOLMA and STT, I find that the performance overhead
of protection decreases with SMT enabled. This arises due to the fact that when a micro-op from
some thread A is stalled for protection, some other thread B can potentially still make progress.

As with single-threaded configurations, I find that both DOLMA-Default and DOLMA-

Conservative—unlike STT—prevent all existing transient execution attacks at mostly lower over-
heads. DOLMA-Default (M+R) (9.8%) again scales to registers far better than STT-Spectre (M+R)
(17.3%), and DOLMA-Conservative likewise achieves lower overhead than STT-Futuristic—
16.2% versus STT’s 25.5% (M) and 22.4% versus STT’s 36.8% (M+R). The only exception to
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Figure 2.7: A demonstration of DOLMA’s effectiveness in mitigating various covert timing chan-
nels. Each of the attacks leaks the value of the secret byte (42) on a baseline OoO processor (left)
in gem5 [24]. In contrast, a DOLMA-protected processor prevents data from entering these chan-
nels during transient execution, thereby mitigating the attacks (right).

this trend is DOLMA-Default (M) (3.4%) versus STT-Spectre (M) (3.2%), where performance is
still roughly equivalent despite DOLMA’s additional protections for store-based transmission and
data speculation.

2.7.2 Security Evaluation

I additionally compare the effectiveness of DOLMA against transient execution attacks with
STT in Table 2.2. DOLMA-Default blocks all documented Spectre-type attacks, and DOLMA-
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Mode Energy Energy (SMT)
DOLMA-Default (M) 10.8% 4.46%
DOLMA-Conservative (M) 29.2% 16.4%
DOLMA-Default (M+R) 22.4% 10.4%
DOLMA-Conservative (M+R) 40.9% 21.9%

Table 2.3: DOLMA’s normalized total energy usage (processor and caches) compared to a baseline
single thread and SMT processor, respectively.

Conservative blocks all documented Spectre-type and Meltdown-type attacks. STT-Spectre vari-
ants fail to address any Spectre-type attack that exploits data speculation [226]. Additionally, all
STT variants fail to comprehensively address store-based transmission—including the speculative
TLB modifications and speculative partial store buffer hits mentioned in this paper.

Penetration Testing. Although simulating every known transient execution attack is not possi-
ble in gem5, I have ported a diverse set of transient execution attacks into an open-source, gem5-
compatible test suite [181]. The goal of this test suite is to directly demonstrate the ability of
DOLMA—as well as future defenses—to mitigate transient execution attacks across a wide range
of covert timing channels (e.g., backend channels such as the D-cache and D-TLB, as well as
frontend channels such as the I-cache and BTB), unsafe micro-ops (e.g., memory micro-ops and
branches), types of speculation (e.g., control and data), and locations of secrets (e.g., in-register
and in-memory).

I depict DOLMA’s effectiveness in mitigating a sampling of these transient execution attacks
in Fig. 2.7. Namely, I show that DOLMA mitigates timing-based transmission of speculatively-
loaded data through the D-cache (load micro-op), BTB (branch), and D-TLB (store). I additionally
show that DOLMA’s protection applies to speculative store bypass [226] as well as attacks on non-
speculative register data. As pictured, DOLMA defeats all attempted transient execution attacks,
regardless of the covert channel, unsafe micro-op, type of speculation, and location of the secret.

2.7.3 Area and Energy Estimates

I provide area and energy estimates for DOLMA using McPAT [178] with recommended changes
for increased accuracy [324]. I model DOLMA’s conceptual changes to the microarchitecture as
follows. The unsafe queue is conservatively implemented as a second copy of the issue queue,
extended with 1+log2(sizeof(ROB)) bits per entry to hold the pending redirect bit as well as ROB
index of the youngest unresolved inducer (set to 0 if all are resolved, meaning the micro-op may
re-issue). Each functional unit (e.g., ALUs and FPUs) and entry in the load-store queue is ex-
tended with log2(sizeof(ROB)) bits to indicate the corresponding micro-op’s position in the ROB;
such a design allows DOLMA to enforce its backend contention policy. Finally, similar to prior
work [340], entries in the frontend register alias table are extended with log2(sizeof(ROB)) bits to
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indicate an operand’s youngest unresolved inducer (either directly produced by a data dependency,
or indirectly via a control dependency).

For area, I find that DOLMA’s overhead is negligible when configured for either single threaded
or SMT execution, incurring 0.9% overhead compared to respective baselines. For energy, as
shown in Table 2.3, DOLMA’s normalized total energy usage is dominated by its increase in exe-
cution time; energy usage overheads for both single thread and SMT configurations roughly corre-
spond to performance overheads for the respective baselines. Therefore, in line with performance
overheads, normalized energy usage for SMT configurations incurs lower overhead (normalized to
an SMT baseline) than a single thread configuration (normalized to a single thread baseline).

2.7.4 Limitations

First, as the gem5 baseline processor does not allow faulty data propagation, I are unable to
directly demonstrate the effectiveness of DOLMA-Conservative against Meltdown-type attacks.
However, given that DOLMA-Default clearly prevents SSB [226]—and the restriction policy
DOLMA-Default applies to SSB load dependants is extended to all load dependants in DOLMA-

Conservative—I argue that DOLMA-Conservative indeed mitigates Meltdown-type attacks.
Second, I only demonstrate transmission via the BTB using the simpler of gem5’s two BTB

implementations (i.e., one that uses a less complex indexing function). However, as speculative
BTB transmission has been demonstrated on real hardware [196], it is clearly a viable channel.

Third, the gem5 baseline only features constant-time ALU and FPU operations, meaning
DOLMA’s benefits over prior work [340] for these operations are not modelled.

Fourth, because gem5’s system emulation mode does not add latency for TLB misses, our fig-
ures include an artificial TLB miss latency of 10 cycles for visualization purposes. I conservatively
calculated this latency by assuming a 2-cycle penalty for the initial miss, plus a 4-cycle L1 lookup
for each TLB stage. I verified that a TLB hit only occurs for the secret value in the simulator.

Fifth, modeling hardware in software simulators limits evaluation accuracy in the name of im-
plementation feasibility. This limitation is particularly prevalent for total energy estimates, which
depend on the accuracy of gem5 performance numbers and McPAT calculations.

2.8 Related Work

Transient execution attacks. Spectre [158] and Meltdown [179] are the first known attacks that
exploit speculative execution to leak data via microarchitectural timing side channels. Since then, a
wave of attacks have emerged. Most of these attacks use the D-cache as a timing side channel [35,
45, 156, 158, 164, 179, 191, 194, 226, 227, 229, 264, 266, 268, 283, 291, 296, 297, 301, 302, 303, 316,
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326]. Attackers have also demonstrated speculative data leaks through the AVX unit [267], issue
ports [22], I-cache [196], BTB [196], and global staging buffer [245], as well as suggested the
possibility of speculative data leaks through the TLB [259, 331]. Recent work demonstrates that
TSX Asynchronous Aborts can also be exploited to leak secrets [266, 301].

Software Mitigations. Due to the difficulty of patching deployed hardware, numerous software
patches for transient execution attacks exist. Unfortunately, no software-only techniques provide
comprehensive protection.

For Meltdown-type attacks, software mitigations tend to focus on enforcing stronger isolation
between security domains. For example, kernel address space layout randomization (KASLR)
increases the difficulty of finding kernel data to leak [90]. However, while KASLR makes Melt-
down more difficult to exploit, it does not altogether prevent it. Kernel page table isolation (KPTI)
defeats the original Meltdown variant by placing kernel data in a separate address space [56, 90].
However, KPTI does not prevent other Meltdown-type attacks [35,227,266,268,283,296,302,316].
Other proposed defenses offer attack- or channel-specific OS/VMM code modifications. For in-
stance, flushing the cache on context switches between privilege levels only mitigates the cache
channel [111, 316].

A wider variety of software mitigations have been proposed for Spectre-type attacks. Compiler
techniques include modifying vulnerable code patterns to prevent a subset of transient execution.
For example, Retpoline [293] protects call and return instructions from speculatively leaking values
on the return stack buffer as in Spectre-RSB [164]. Unfortunately, Retpoline fails to protect against
other Spectre variants.

Other compiler techniques insert LFENCEs or add artificial data dependencies to prevent tran-
sient loads [38, 231, 276, 287, 307], potentially using program analysis techniques or hardware-
software contracts to identify information flows [93, 94, 307]. These techniques can mitigate at-
tacks on memory-based secrets, such as Spectre v1 and Spectre v2 in some cases. However, they
either fail to protect register-based secrets, fail to cover all Spectre variants (e.g., SSB [226]), or
incur higher overhead than the state-of-the-art hardware defense [340].

Hardware Mitigations. Hardware defenses offer the ability to mitigate transient execution at-
tacks at their microarchitectural sources [205,315]. The comprehensive solution for all Meltdown-
type attacks is to prohibit potentially faulty micro-ops from propagating their results in future pro-
cessors [179,315]. In the interim, microcode patches have been individually issued for Meltdown-
type attacks [111, 113, 302, 316].

Hardware patches also exist for certain Spectre-type attacks. Processors can automatically in-
sert LFENCEs after branches and context switches via microcode [112, 113], as well as disable
SSB [7,114]. SpecCFI [163] prevents Spectre v2 by restricting speculative jumps to an authorized
set of targets. None of these techniques, nor their union, can mitigate all Spectre variants.
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MI6 [30] provides secure enclaves in an out-of-order processor via microarchitectural resource
isolation (e.g., flushing core-local structures on context switches). Compared to DOLMA, MI6
does not support SMT and requires the use of a software monitor executing non-speculatively to
manage transitions between the enclave and outside world.

InvisiSpec [331] and others [2,143,177,255,258,259,331] only protect select load-based trans-
mission channels (e.g., the D-cache), in contrast to speculative information flow control defenses
such as DOLMA. The InvarSpec microarchitecture [349] optimizes these cache-centric defenses,
using compiler-generated instruction annotations to help determine when a load’s execution would
not explicitly reveal speculative operand values.

Manual speculative information flow control defenses [76,265,338] require the programmer to
annotate secrets for protection, as opposed to the automatic protection provided by DOLMA. The
strict timing requirements for annotated data ensure that speculative execution produces neither
transient nor non-transient side channel leakages (i.e., in the event speculation resolves correctly).
While effective in providing protection for annotated data, the security of manual defenses relies
on proper programmer annotation of secrets.

Existing automatic speculative information flow control defenses [17,315,340] prevent varying
sets of speculative dependants from issuing until speculation resolves. Notably, SpecShield [17]
only protects speculatively-accessed data (e.g., data in memory), and NDA [315] does not prevent
leakage of register-based secrets via a single transient micro-op. STT [340] fails to comprehen-
sively mitigate transmissions via stores, whether secrets are in memory or in registers. In contrast,
DOLMA protects against all known transient execution attacks, and incurs 8.2–21.2% less over-
head than the state of the art [340] when scaling to protect data in registers.

Finally, during the revision of this paper, the authors of STT published an optimization frame-
work (SDO [339]). Like DOLMA, SDO improves performance over STT primarily by allowing
speculative loads to safely execute in certain scenarios. SDO creates a “data-oblivious” load, which
behaves independently of its operands as well as other unsafe operands. However, to achieve such
a load, SDO requires that (1) for each operand-dependent resource access (e.g., a cache bank ac-
cess), the load instead accesses all such resources (e.g., all banks), and (2) the load blocks all other
accesses to these resources until complete. Accordingly, an attacker could intentionally issue spec-
ulative data-oblivious loads to temporarily deny cache access to other tenants, in a similar manner
to prior cache denial-of-service attacks [18, 320]. Furthermore, SDO does not address any of the
store-based security vulnerabilities present in STT and does not consider the effects of the staging
buffer [245]. Therefore, SDO requires additional considerations for multitenant environments.
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2.9 Conclusion

Efficiently mitigating transient execution attacks is challenging. Initial hardware mitigations fo-
cused on cache transmission [2, 143, 154, 177, 259, 331]. Manual speculative information flow
control defenses [76,265,338]—though effective—require error-prone annotations of secrets. Au-
tomatic solutions fail to comprehensively protect data in registers [17, 315, 339, 340] or mem-
ory [339, 340]. DOLMA introduces a novel principle of transient non-observability, combining a
lightweight speculative information flow control design with a set of secure performance optimiza-
tions to protect data in memory and registers against all existing transient execution attacks.
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CHAPTER 3

Stop! Hammer Time: Rethinking Our Approach to
Rowhammer Mitigations

3.1 Introduction

DRAM is the most prominent main memory technology, attractive due to its high density and low
cost. DRAM cells are organized in row-column arrays, accessed by first activating a row (i.e.,
connecting it to a buffer) and then reading from or writing to this buffer. Since cells leak charge
over time, rows are periodically refreshed to retain their data.

Unfortunately, as DRAM density increases with successive module generations (desirable for
cost and efficiency reasons), so too does the electromagnetic interference among physically-
proximate DRAM rows. Ultimately, this rising interference increases DRAM disturbances [152],
wherein bit values in nearby rows of DRAM are flipped.

Concerningly, Rowhammer attacks [53,59,75,91,92,124,131,147,152,167,180,218,241,250,
269, 288, 299, 300, 325] show that certain memory access patterns can increase the frequency of
DRAM disturbances. In particular, frequently activating one or more aggressor rows—prior to the
scheduled refreshes of nearby victim rows—may cause bit flips in the victim rows.

These hardware-level bit flips manifest as system-level problems, with particularly troubling
ramifications in multi-tenant computing environments (e.g., the cloud). For instance, one tenant
may corrupt the data of another, leading to data loss or machine shutdown/failure. In other scenar-
ios, flips of security-critical bits (e.g., page table permission bits [269]) can compromise an entire
host.

To date, DRAM vendors have shown years of unwillingness (perhaps due to economic reasons)
to provide a comprehensive solution to Rowhammer. Despite vendor claims that their defenses
prevent all Rowhammer attacks [172, 206], recent work [59, 75] demonstrates that Rowhammer
exploits remain viable. Given the blackbox nature of vendor mitigations, system administrators
are left largely powerless to prevent these attacks, just as they were the original exploits.
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In fact, recent work [147] argues that optimal defenses should include software support. The
authors show that proposed hardware mitigations [152,171,337] struggle to scale or cannot provide
comprehensive protection given increasing DRAM density. Consistent with these findings, state-
of-the-art follow-up defenses [236, 336] are limited by worsening performance overhead and a
need for increasing SRAM or CAM area (i.e., relatively-expensive memory) as density increases.

However, existing software defenses [13, 27, 31, 41, 91, 123, 123, 161, 175, 300, 322, 347] can-
not achieve compehensive and practical protection due to the lack of hardware-based Rowhammer
management primitives. For instance, ANVIL [13] relies on information from performance coun-
ters that do not account for direct memory accesses (DMAs); this leaves the system vulnerable to
DMA-based Rowhammer attacks [300, 317], a concerning threat surface for cloud providers.

The shortcomings of both hardware and software defenses highlight the need for a hardware-
software co-design to mitigate Rowhammer. More specifically, current hardware defenses need
software support to adapt and scale to emerging attacks, while software defenses need hardware
assistance to effectively mitigate attacks.

Fortunately, despite years of incomplete and blackbox mitigations from DRAM vendors, CPU

vendors can still provide hardware assistance for defenses. I argue that CPU vendors should add a
new set of Rowhammer management primitives to the CPU’s integrated memory controller. Com-
pared to DRAM vendors, CPU vendors have shown a willingness to expose a relatively-high num-
ber of memory management features to programmers, including a variety of performance coun-
ters [110] and BIOS configuration parameters [115].

I motivate our proposed memory controller primitives with key insights about Rowhammer
attacks and existing defenses, producing a novel taxonomy of mitigation approaches: isolation-

centric, frequency-centric, and refresh-centric. I show that system admins (e.g., cloud providers)
can use our primitives to produce scalable and adaptable software defenses according to this tax-
onomy. Finally, I conclude with a long-term outlook on how major consumers of DRAM can drive
the changes in hardware-software co-design needed for a comprehensive solution to Rowhammer.

3.2 Background

In this section, I provide background on DRAM and a novel taxonomy of Rowhammer defenses
to understand our new hardware primitives and software defenses.

3.2.1 DRAM+Rowhammer: A Crash Course

DRAM modules (e.g., SO-DIMMs in laptops and DIMMs in servers) consist of numerous banks,
where each bank is a set of row-column subarrays of cells. A cell’s charge distinguishes a partic-
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DRAM BANK
C0 C1 C2 C3

Subarray A
R0 - - - -
R1 1 1 0 1

Subarray B
R2 1 0 1 1
R3 0 1 0 0

CACHES
CORES

MC
ACT

Row Buffer (R0)
0 1 1 0

RD/WR

Figure 3.1: A simplified memory system. Memory controller MC activates row R0 in subarray A,
connecting it to the bank’s row buffer for read/write commands.

ular bit as either 0 or 1.
Modules are programmed via a memory controller. For instance, the memory controller con-

verts requests targeting CPU physical addresses into commands targeting DDR logical addresses
(e.g., bank, row, column) according to a fixed mapping determined by BIOS settings [51].

To actually read/write the cells within a particular row, the memory controller must first issue
an activate (ACT) command to the row containing the cells, thereby connecting this row to its
encompassing bank’s row buffer for processing. Such an ACT is shown in Fig. 3.1, where a
module is depicted as a single bank with two 2× 4 subarrays for simplicity. I note that each bank
has its own row buffer, and a bank may contain hundreds of subarrays that share its row buffer.

At this point, the memory controller can issue read (RD) or write (WR) commands to cache
line-sized column offsets within the activated row, until the row is precharged (i.e., de-activated);
precharge (PRE) commands are typically issued so that another row in the same bank may occupy
the row buffer for RDs/WRs. In line with processor cache behavior, RDs/WRs that hit in the row
buffer are faster than those that necessitate an ACT before the data access can proceed.

Because DRAM cells leak their charges over time, the memory controller periodically issues
refresh (REF) commands such that each row’s cells are recharged (i.e., repaired) before losing their
bit values. Typically, each 8 KB row must be refreshed within 64 milliseconds of its last refresh,
where the module cycles through its rows during this refresh interval. I note that an ACT of a row
also repairs the row as a side effect; thus, an ACT can essentially be used for row refresh.

Unfortunately, Rowhammer attacks [152] show that frequent ACTs of the same row(s)—
induced by certain memory access patterns—can corrupt data in physically-proximate rows. In
particular, alternating RDs or WRs to a set of aggressor rows within a single bank necessitate al-
ternating ACTs of these aggressors due to bank conflicts (i.e., row buffer contention). In turn, be-
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cause of the electromagnetic interference among physically-proximate rows, these frequent ACTs
may disturb the charges in nearby victim rows.

More precisely, each row can safely withstand a per-module maximum activation count (MAC)
of ACTs within a refresh interval. However, if one or more aggressors surpass their MACs before
a (potential) victim row is refreshed, the victim’s data may be corrupted. Victim rows are those
found up to b rows away from an aggressor, where b defines an aggressor’s blast radius (which
varies across DRAM technologies).

Notably, attackers with knowledge of DRAM address mappings can target specific data for
corruption. While DRAM occasionally remaps two logically-adjacent rows to different internal
locations [51], these remaps (and thus, internal adjacency) can be revealed via established meth-
ods. In particular, prior work [51, 75, 147, 161] uses the success or failure of Rowhammer attacks
themselves—which require physically-proximate rows—to infer row adjacency.

3.2.2 Rowhammer Mitigations: A Taxonomy

At a high level, mounting a Rowhammer attack requires three conditions. First, at least one victim
row must be located within the blast radius of at least one aggressor row. Second, one or more of
the aggressor rows must be activated greater than MAC times within a refresh interval. Third, the
victim row(s) must not themselves be refreshed before the aggressor(s) surpass the MAC.

Thus, Rowhammer defenses should eliminate one of these conditions, yielding our novel tax-
onomy of viable mitigations: isolation-centric, frequency-centric, and refresh-centric. I note that
concurrent work [336] offers a similar taxonomy.

Isolation-Centric. Isolation-centric mitigations (e.g., [27, 31, 161, 322]) aim to physically iso-
late the rows from two different trust domains such that no cross-domain aggressor-victim rela-
tionships exist (e.g., a process cannot hammer another). For instance, ZebRAM [161] places b

restricted-use “guard” rows between each potential aggressor-victim pair (where b is equal to the
blast radius). Notably, isolation-centric mitigations typically do not prevent intra-domain DRAM
disturbances (i.e., where an aggressor-victim relationship exists within a single domain, potentially
inadvertently).

Frequency-Centric. Frequency-centric mitigations (e.g., [308, 336]) try to prevent the
dangerously-frequent ACTs of aggressor rows needed to disturb nearby victim rows. For instance,
BlockHammer [336] throttles (i.e., rate-limits) ACTs of aggressor rows according to a set of pro-
posed memory controller counters, ensuring the number of ACTs to any row during a refresh
interval stays below the MAC.

Refresh-Centric. Finally, refresh-centric mitigations (e.g., [13, 75, 152, 171, 279, 337, 347])
seek to refresh potential victim rows before they experience bit flips. More specifically, these
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defenses use a set of hardware and—in some cases—software mechanisms to identify potential
victim rows. The defense systems then proactively refresh these victims before the corresponding
aggressor row(s) reach their MACs.

3.3 D(R)AMit, I Can’t Do It by Myself!

Concerningly, recent work [147] demonstrates that the Rowhammer problem is worsening in suc-
cessive DRAM generations. Specifically, as emerging DRAM technology nodes become denser,
the electromagnetic interference among rows worsens, resulting in greater blast radii and orders-
of-magnitude fewer ACTs (i.e., lower MACs) needed to induce charge leakages. Furthermore,
lower MACs imply that a greater number of rows can act as aggressors (i.e., bypass the MACs).

Thus, while various hardware defenses have been proposed [75, 81, 84, 97, 144, 147, 149, 152,
171, 172, 206, 236, 279, 308, 310, 311, 336, 337], recent work has concluded that even the state of
the art among them either (a) cannot provide comprehensive protection or (b) require significant
overheads to scale to denser DRAM technology [147]. Ultimately, DRAM experts have identified
hardware-software cooperative mitigations as a key avenue for addressing the scalability
challenges of Rowhammer defenses going forward [147].

Unfortunately, sufficient hardware support for Rowhammer defenses is unlikely to come from
DRAM vendors in the immediate future. First, DRAM vendors continue to expose little infor-
mation about their Rowhammer mitigations and potential limitations, possibly due to a desire to
maintain trade secrets about their DRAM design.

Second, even today’s DRAM modules (let alone tomorrow’s) are still vulnerable to Rowham-
mer [59, 75], despite vendors originally claiming the opposite [172, 206]. Prior work [59, 75]
has shown that in-DRAM blackbox defenses (Target Row Refresh, or TRR) mitigate attacks by
tracking a small number n of aggressor rows (where n varies by module and vendor), but can be
bypassed with > n aggressors. Given increasing numbers of aggressors, this a bleak observation.

3.4 Changing the Game with New Primitives

In contrast to hardware defenses, software defenses tend to require less invasive—if any—changes
to memory system hardware, with the added benefit that software implementations allow for adapt-
ing to yet-unknown exploit patterns. Unfortunately, as I will show, software defenses presently
lack sufficient support from hardware to provide comprehensive and practical protection against
Rowhammer attacks.

However, while a solution to the Rowhammer problem would ideally include changes to
DRAM, I argue that the current limitations of software defenses can still be overcome via minor
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changes to the CPU’s integrated memory controller. Compared to DRAM vendors, CPU vendors
have demonstrated a willingness to expose a plethora of information and configuration parame-
ters, including various memory controller performance counters [110] and memory configuration
settings in the BIOS [115].

I therefore discuss three key limitations in the context of implementing isolation-, frequency-,
and refresh-centric software mitigations on existing CPUs. I then describe how to address each
of these limitations with simple extensions to the memory controller (summarized in Table 3.1),
thereby forming the primitives necessary to produce efficient and practical isolation-, frequency-,
and refresh-centric defenses in software. I plan to precisely evaluate the benefits/drawbacks of
these defenses in future work (e.g., using the gem5 [24, 188] microarchitectural simulator); the
RISC-V [11] ecosystem offers a viable alternate evaluation platform.

Notably, I largely assume that the host OS (e.g., the hypervisor) is trusted to implement and
enforce these mitigations. I provide considerations for enclave memory (e.g., Intel SGX [57]) at
the end of this section.

3.4.1 Isolation-Centric: Interleave It To Me

Problem: Interleaving Mixes Trust Domains. Implementing isolation-centric defenses in
software—wherein aggressor rows from one trust domain d1 (e.g., a process) cannot disturb vic-
tim rows from another domain d2—requires that the host OS’s page-level memory allocator can
ensure data from d1 is outside the blast radius b of data from d2 in DRAM. Such isolation has been
achieved by placing b “guard” rows between trust domains [161], or using a bank-aware memory
allocator [27, 31, 343] to place d1 and d2 on different banks.

However, prior work [27, 31, 161, 343] fails to sufficiently account for the complexity and per-
formance benefits of memory interleaving on modern systems. Because a bank can only process
one command at a time, the memory system interleaves (i.e., spreads) consecutive cache lines
from the CPU’s physical address space across the system’s numerous banks [345]. Such inter-
leaving achieves bank-level parallelism when accessing physically-consecutive cache lines (i.e.,
consecutive lines can be accessed simultaneously for efficiency).

Unfortunately, such interleaving also distributes lines from different pages (i.e., potentially dif-
ferent trust domains) into the same bank. While interleaving can be disabled in the BIOS (allowing
the memory allocator to isolate pages from different domains to specific banks), this eliminates the
performance benefits of bank-level parallelism [43, 153, 169, 286, 345] (i.e., parallelism measured
to reduce execution time for certain applications by over 18% [286]) and is thus an undesirable
solution for production environments.

Primitive: Subarray-Isolated Interleaving. I argue that there is a middle ground, where
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Figure 3.2: An example of subarray-isolated interleaving. The host memory allocator and memory
controller cooperate to ensure that different trust domains (VMs x, y, and z) can reap the perfor-
mance benefits of interleaving their consecutive cache lines CL0-CL5 across banks 0, 1 and 2.
For security, the lines from each domain are restricted to per-domain, Rowhammer-isolated subar-
ray(s): in this case, single subarray mappings of x → A, y → B, and z → C.

existing interleaving (and its performance benefits) can remain fully-enabled, while pages from
different trust domains can be isolated. Namely, rather than BIOS support for bank-aware memory
allocation, I propose support for subarray-aware memory allocation.

Recall from Fig. 3.1 that a DRAM bank consists of a set of row-column subarrays. Notably,
each subarray within a bank is electromagnetically-isolated from the others (i.e., they do not share
bit lines) [43, 153], meaning data from different trust domains can be placed on different subar-
rays to prevent inter-domain aggressor-victim relationships. For instance, in a cloud environment,
subarray isolation can be used to prevent inter-VM Rowhammer attacks.

Therefore, I posit that CPU vendors should provide a BIOS configuration option to enable
subarray-isolated interleaving in each memory controller, as shown in Fig. 3.2. This option pro-
vides the host OS with two key features. First, cache lines from the same page will map to the
same subarray group (i.e., set of specific subarrays across banks). Second, the host OS will be
able to specify—either directly or indirectly—the trust domain of each page, such that the memory
controller enforces that pages from the same trust domain map to the same subarray group.

From a software convenience standpoint, a direct specification would allow the host OS and
memory controller to coordinate trust domains via an address space ID (ASID) tag per domain,
akin to those already used in the TLB. However, if CPU vendors are unwilling to add hardware
to track the mappings for a set of ASIDs, the memory controller already provides indirect support
via its known set of CPU physical to DDR logical address mappings [51]; knowledge of these
mappings has been used to allocate specific physical pages on specific banks [27,31,161,343] and
can similarly be used to map specific physical pages to specific subarray groups.
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In an ideal world, DRAM vendors would also facilitate subarray-isolated interleaving by expos-
ing DRAM-internal subarray mappings in the DDR logical address space, akin to what is already
done with bank mappings. However, even without this information, internal subarray mappings
can be inferred via the same methods used to infer internal row adjacency/remappings (§3.2.1);
that is, the success or failure of Rowhammer attacks within a bank can be used to infer subarray
boundaries from software.

Notably, DRAM could still remap a row from its logical subarray to a different internal subarray,
posing a threat to subarray isolation. Thankfully, the host OS can use the inferred DRAM subarray
mappings—coupled with knowledge of CPU to DDR logical address mappings—to ensure that all
rows are allocated with their internal subarrays.

3.4.2 Frequency-Centric: Context Welcome

Problem: ACT Interrupts Lack Context. Implementing frequency-centric defenses in software
necessitates the ability to identify potential aggressor rows (i.e., rows experiencing frequent ACTs).
While modern Intel memory controllers can count ACTs per channel [109]—as well as interrupt
system software after a host OS-configurable number of ACTs—they do not provide any informa-
tion about the specific row being activated, nor the specific RD/WR command causing the ACT.
Thus, system software is powerless to determine which address(es) to take action on in response
to an ACT interrupt.

Primitive: Precise ACT Interrupt Events. To support identifying potential aggressors, CPU
vendors should augment the existing ACT COUNT overflow event [109] to report the physical
address causing the latest ACT. Doing so would allow the host OS to probabilistically identify and
react to potential aggressor rows/hot cache lines within. I note that this address information would
be consistent with that already reported by various cache events on Intel [110].

More precisely, recall from §3.2.1 that ACT commands are issued when the cache line needed
for a RD/WR is not in a row buffer. Thus, I propose that upon overflow, the ACT COUNT in-
terrupt event should report the physical (cache line) address of the most recent RD/WR to have
triggered an ACT of the row. The host OS can then reset the counter to an arbitrary value, prob-
abilistically identifying aggressors according to specific MACs. By also including a degree of
randomness in counter reset values, the host OS can prevent attackers from avoiding detection.

The host OS can use the address information provided by the interrupt to limit near-future
ACTs of the encompassing row (i.e., within the refresh interval) in a variety of ways. For instance,
software could implement a form of ACT wear-leveling by remapping and moving the row’s data
to a new physical location, either in DRAM or another storage device. To improve the efficiency
of this data transfer, the CPU could support an uncore (i.e., off-core but on the CPU chip) move
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instruction using buffers in the memory controller, thereby avoiding the need to transfer data to
and from on-core registers to relocate a line.

Alternatively, with the addition of cache line locking support (i.e., instructions or other mecha-
nisms that temporarily pin a line to the processor cache, already available on many ARM proces-
sors [10,87]), system software could use cache line locking for the duration of a refresh interval as
a first line of defense. In particular, one or more ways in the LLC could be used for locked lines;
data remapping and movement would then only be used as a fallback if the way(s) become full.
Ultimately, such locking could improve access time for the line in question, prevent its continued
use in ACT generation, and avoid a potentially costly data transfer.

3.4.3 Refresh-Centric: A Refreshing Take

Problem: SW Can’t Directly Refresh Rows. Refresh-cen-tric defenses must proactively refresh
potential victim rows (i.e., rows that are near aggressor rows). Given methods for determining
aggressors (§3.4.2) and row adjacency (§3.2.1), I focus on how to refresh potential victims.

Unfortunately, software has at best inefficient and potentially unreliable mechanisms to refresh
rows. In particular, the REF command does not include a row address argument, meaning the
memory controller/software cannot use it to refresh specific rows; instead, the ACT command
(which takes a row address argument) must be used (§3.2.1). However, software still lacks the
ability to directly issue ACTs to DRAM, with this decision left up to the memory controller. Thus,
software defenses cannot directly refresh rows.

In fact, software can only potentially refresh a specific row via a series of convoluted memory
instructions (e.g., loads/stores). To reach the memory controller, the load/store must first miss in
the cache, generally requiring software cache manipulation (e.g., a preceding flush instruction, if
available) and strict ordering (e.g., memory fences) to reliably occur. At this point, the memory
controller then converts the load/store into a set of RD/WR, ACT, and PRE commands; the spe-
cific set of commands issued depends on the state of the row buffers—information which is not
directly exposed to software. Ultimately, this indirection introduces inefficiency and imprecision
to defenses, especially in the presence of noise (e.g., memory operations from other cores/devices).

Primitive: A Refresh Instruction. To address software’s lack of control over which rows are
refreshed, I propose that the CPU should expose an instruction REFRESH whose effect is to refresh
a specific row of DRAM. I liken this to Intel’s patented mechanism for targeted refreshes via the
memory controller [16]. However, in our case, the REFRESH instruction would be exposed in the
ISA and—crucially—not require additional support from DRAM. Because the ACT side effect of
the REFRESH instruction could be abused to carry out a Rowhammer attack, REFRESH should be a
host-privileged instruction (i.e., only executable by the host OS).
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Class MC Primitive Corresponding Software Defense(s) Optional DRAM Assistance

Isolation Subarray-isolated interleaving Subarray-aware memory allocation Internal subarray mappings
Frequency Precise ACT interrupt event Aggressor remapping, cache line locking -
Refresh CPU REFRESH instruction Efficient software refresh of victim rows REF NEIGHBORS command

Table 3.1: Summary of proposed memory controller (MC) primitives, corresponding software
defense(s), and optional assistance from DRAM by mitigation class.

The REFRESH instruction will take as an argument a virtual address VA—which maps to a
particular DRAM row—and a bit AP indicating whether to auto-precharge the row after activation
to prevent bank conflicts. The instruction will be implemented as follows. First, the TLB will
translate VA to its corresponding physical address, which the memory controller will convert to a
row address. Second, the memory controller will issue a PRE command to the row’s encompassing
bank to clear its row buffer. Third, the memory controller will issue an ACT command to the
desired row, thereby effectively performing the refresh. Fourth, if the AP bit is set, the memory
controller will issue another PRE command to the bank to clear the row buffer for subsequent
accesses.

Finally, in an ideal world with support from DRAM, the DDR standard would include a
REF NEIGHBORS command, similar to that proposed in prior work [171, 236]. However, in
addition to taking an aggressor row address as an argument, I propose that the command should
also accept a blast radius b for adaptability to emerging threats. DRAM would then automatically
refresh the potential victims of the provided aggressor row up to b rows away.

3.4.4 What About Enclave Memory?

The preceding discussion assumes that the host OS is trusted to implement and enforce the de-
scribed mitigations. Notably, in certain enclave execution contexts (e.g., Intel SGX [57], Intel
TDX [117], and AMD SEV [8]), only the enclave itself and hardware are trusted. Thus, these
scenarios require additional considerations for software Rowhammer defenses.

Strictly-speaking, if enclave memory is checked for integrity upon access, then Rowhammer
attacks can only cause system-wide denial-of-service (as opposed to arbitrary behavior changes
stemming from data corruption). More specifically, upon a failed integrity check, the system will
lock up and require a reset [124]. Because the host OS is untrusted and can already tamper with the
integrity of enclave pages (i.e., without Rowhammer), such denial-of-service attacks are typically
not considered in enclave threat models.

However, if enclave memory is not integrity-checked upon access, then the system must prevent
(or at least, detect and gracefully shutdown upon) bit flips to ensure security. For isolation-centric
defenses, the CPU could report the subarray(s) upon which the enclave resides in terms of physical
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addresses, such that the enclave may simply verify its virtual to physical address mappings (as is
already done [57]). For frequency-centric defenses, the CPU could report ACT interrupts directly
to enclaves, such that they might infer they are under attack and either (a) require a remap to a
new location or (b) peacefully exit where permissible. Finally, for refresh-centric defenses, I posit
that in the presence of subarray-isolated memory, an enclave could be permitted to issue REFRESH

instructions to addresses mapped within its address space. I leave the exploration of these solutions
to future work.

3.5 Outlook: Optimal Fixes

In this paper, I have described the limitations of and disconnect between existing hardware and
software Rowhammer mitigations. To address these issues, I have proposed a variety of CPU-
based primitives that would enable effective and practical hardware-software co-design defenses.
Nonetheless, while a combination of CPU and software mitigations may prove more immediately-
viable than in-DRAM support (e.g., in terms of scalability, adaptability, and economics), the root
of the Rowhammer problem lies in DRAM.

Thus, in the long-term, I argue that optimal implementations of our defenses would include
collaboration with both CPU and DRAM vendors. To achieve cooperation from DRAM ven-
dors, cloud providers, CPU manufacturers, and other major consumers of DRAM must convince
DRAM vendors to expose the details—and limitations—of their mitigations. Doing so would al-
low software, CPU, and in-DRAM mitigations to work in tandem to efficiently and scalably solve
the Rowhammer problem once and for all.
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CHAPTER 4

MOESI-prime: Preventing Coherence-Induced
Hammering in Commodity Workloads

4.1 Introduction

The threat of Rowhammer [152] bit flips (i.e., DRAM disturbances) is a widespread concern,
especially in multi-tenant computing environments such as the cloud. Rowhammer arises from
frequent activations—to a first approximation, accesses—of the same DRAM rows, which can
disturb data in nearby rows due to electromagnetic interference. These bit flips manifest at the
system level as data loss, machine failure, or system subversion.

Prior attacks and analyses [51, 53, 59, 75, 91, 92, 98, 124, 125, 131, 147, 152, 167, 180, 218, 233,
240,241,250,269,288,289,299,300,325] confirm that malicious adversaries can trigger sufficient
activations to flip bits, establishing Rowhammer as a security threat. At a high level, existing
attacks require a carefully-crafted sequence of instructions to bypass CPU caches and thereby
frequently access DRAM. Thankfully, to our knowledge, these instruction sequences have not

been shown to occur in non-malicious (e.g., commodity) workloads with sufficient frequency to
risk bit flips.

However, I present coherence-induced hammering, a novel form of Rowhammer that naturally

occurs in commodity benchmarks on cache coherent non-uniform memory access (ccNUMA) ar-
chitectures (e.g., multi-socket servers used by a major cloud provider). Notably, coherence-induced
hammering instruction sequences occur without workload manipulation. Thus, I offer the first ev-
idence of Rowhammer’s additional reliability threat.

Using DDR4 DRAM access traces, I show that Intel’s ccNUMA coherence protocols frequently
access DRAM in common data sharing scenarios. In fact, the protocols activate individual rows
at rates previously-shown to induce bit flips. Amidst rising Rowhammer susceptibility in newer
DRAM (i.e., fewer activations needed to flip bits, more rows simultaneously reaching these activa-
tion rates, and projections that the problem will continue to worsen [147,233,261]), it is paramount
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to revisit ccNUMA protocol design before already-vulnerable mitigations [59,75,98,125,240] are
overwhelmed.

I discern that coherence-induced hammering in commodity workloads arises from three phe-
nomena, depending on the protocol. The most basic phenomenon is that of downgrade write-
backs [220], a side effect of MESI protocols, where caches must write-back dirty lines before
sharing them. In ccNUMA systems—where data can be shared among caches on different nodes—
these downgrade writebacks can repeatedly go to DRAM, resulting in hammering. Luckily, down-
grade writebacks can be trivially eliminated by adopting widely-used MOESI protocols [220].

Unfortunately, I discover two additional sources of coherence-induced hammering in Intel’s
MESI-based ccNUMA protocols that are more difficult to address. First, both Intel’s broadcast and
memory directory protocols issue speculative reads to DRAM as performance optimizations. How-
ever, certain data sharing patterns (e.g., migratory [58, 284], as occurs for lock-protected “writer-
writer” data) induce repeated, mis-speculated DRAM reads of the same cache lines, triggering
row activations that hammer DRAM. Second, Intel’s newer memory directory protocol [202]
adds another source of hammering. Specifically, inadvertently-redundant writes to the in-DRAM
directory—to ensure coherence correctness—frequently-activate the same row(s) of DRAM. As I
will show, these phenomena cannot be prevented by a conventional MOESI protocol.

Accordingly, in this work, I introduce MOESI-prime: a ccNUMA protocol that mitigates
coherence-induced hammering, while retaining the use of Intel’s state-of-the-art memory directory
for scalability. MOESI-prime is based on the observation that mis-speculated reads and redun-
dant directory writes (the remaining sources of coherence-induced hammering in a conventional
MOESI protocol) can be omitted without loss of correctness. For instance, a speculative read can
be omitted without loss of correctness if it will go unused due to mis-speculation. Likewise, a
memory directory write can be omitted without loss of correctness if it is known to be redundant.

I show that adding just two additional stable states (i.e., the states a cache line can be in when a
transaction is not already in progress) to a baseline 5-state MOESI memory directory protocol pre-
vents hammering memory directory writes. Our key insight is that coherence-induced hammering
only arises in the presence of dirty data. Thus, for “conventional” dirty states (M and O), I addi-
tionally provide “prime” variants (M’ and O’). The prime states behave almost identically to their
conventional counterparts to reduce the burden of ensuring protocol correctness (§4.5). The lone
difference is that the prime states allow caching agents to recognize scenarios in which memory
directory writes are guaranteed to be redundant, enabling safe omission of these writes. Notably,
MOESI-prime’s 7 stable states fit in 3 bits per cache line, consuming the same area as the 5 stable
states of MOESI.

For hammering via mis-speculated reads, a simple change to the existing directory cache’s
management policy prevents offending reads—and only these reads—from being issued.
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I evaluate MOESI-prime in gem5 [24, 188], using a full-system configuration that models a
major cloud provider’s production hardware. I demonstrate that MOESI-prime prevents identified
sources of coherence-induced hammering in both malicious and non-malicious workloads. Ad-
ditionally, I prove that baseline MESI/MOESI protocols can be transformed into MOESI-prime
protocols without loss of correctness. Finally, I show that MOESI-prime’s prevention of unnec-
essary reads and writes has negligible effect on average performance (within ±0.61% of MESI
and MOESI baselines) and average DRAM power (0.03%–0.22% improvement) across PARSEC
3.0 [344] and SPLASH-2x [321] in 2-, 4-, and 8-node ccNUMA configurations.

In summary, I make the following contributions:

• Using DDR4 memory access traces—collected from commodity benchmarks on a major
cloud provider’s production hardware—I discover coherence-induced hammering, the first ham-
mering found to occur in non-malicious code.

• I identify hammering sources in Intel ccNUMA protocols.
• I design MOESI-prime, a ccNUMA protocol that prevents coherence-induced hammering,

while retaining the use of Intel’s state-of-the-art memory directory for scalability.
• I show that MOESI-prime is the first mitigation that simultaneously prevents coherence-

induced hammering, improves average DRAM power, and negligibly affects average
performance—even slightly increasing performance for many workloads.

Our implementation and evaluation infrastructure is open-source [186].

4.2 Background

4.2.1 DRAM and Rowhammer

DRAM cells encode a single bit of information via high/low voltage, and are organized in row-
column banks (arrays). To access cells within a row, a memory controller first issues an activate

(ACT) command, connecting the row to its bank’s row buffer. To read or write at cache line-sized
granularity, the controller then issues read (RD) or write (WR) commands to column offsets within
the buffer.

Rowhammer [152] is a circuit-level disturbance effect where frequent ACTs of the same row(s)
can flip bits in nearby rows. For example, as only one row can occupy its bank’s row buffer at a
time, alternating RDs (or WRs) to aggressor rows within a bank require repeated ACTs of each
aggressor. However, because of electromagnetic interference, nearby victim rows are susceptible
to bit flips until they are periodically refreshed.

To combat Rowhammer, modern servers rely on error correction (ECC [53]) and target row
refresh (TRR [75], a DRAM-internal defense that detects and refreshes select vulnerable rows
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ahead of schedule). Unfortunately, these mitigations are not comprehensive, as uncorrected bit
flips can be induced despite ECC [53] and TRR [59, 75, 125, 240]. Alternative mitigations yield a
range of security-performance trade-offs and are not known to be deployed [13, 16, 21, 27, 31, 41,
73, 81, 84, 147, 149, 150, 152, 161, 171, 175, 183, 199, 236, 256, 300, 308, 322, 336, 337].

4.2.2 ccNUMA Architectures

Cloud providers deploy large quantities of cores and DRAM per server for cost effectiveness and
ease of management. Accordingly, modern servers are often architected as non-uniform memory
access (NUMA) for performance and scalability. A set of cores (e.g., a socket, cluster-on-die [105],
or core complex/chiplet [252]) comprises a processing node, which is associated with a local (near)
memory pool that is faster to access than remote (far) memory. Each physical address in the system
maps to a local “home” node. Thus, NUMA can provide lower latencies to workloads using local
memory, and reduce memory traffic interference among independent tasks on different nodes.

Today’s NUMA servers are typically cache coherent (ccNUMA)—i.e., hardware enforces co-
herence across nodes. Specifically, each line maps to one home agent (located at the line’s home
node), which enforces the line’s coherence.

Thus, ccNUMA systems offer a programmer-friendly coherent memory model across nodes,
and scheduling flexibility via more cores and memory on one machine. While scheduling work-
loads across nodes can hurt performance [26, 249], cloud providers and customers benefit from
the ability to (1) execute and easily manage workloads needing more resources than there are on
a node, and (2) run smaller workloads in “pigeonhole” scheduling cases (e.g., sufficient cores and
memory are only available if split across nodes).

4.2.3 Coherence Protocols

Commodity coherence protocols enforce a single-writer, multiple-reader invariant, where for a
valid cached line, either (a) one core has exclusive write permission, or (b) one or more cores have
read-only access. The invariant is typically enforced by write-invalidate on servers, where a core
invalidates all other line copies before writing (to obtain exclusive access).

Coherence States. Coherence protocols are described in terms of their stable states, the states
a line may be in when a transaction on the line is not in progress. During transactions, lines are in
transient (i.e., busy) states. Stable states typically encode line validity, read/write permission, and
dirty status (i.e., whether a line must be written back). For instance, a basic MSI protocol offers 3
stable states: Modified (dirty+writable), Shared (clean+read-only), and Invalid (invalid).

A MESI protocol—variants of which are used by modern Intel servers [100]—adds the
Exclusive state as an optimization, where E encodes clean+writable. The extra E state avoids

49



the need to obtain write permission after fetching private data (i.e., data only cached on a single
core), reducing coherence traffic.

A MOESI protocol—used by modern AMD servers [54]—also adds the Owned state, where
O encodes dirty+read-only. The potential benefit of using MOESI over MESI is the elimination
of downgrade writeback traffic [220], incurred in MESI when a line in M is shared for reading
with another cache. While the performance and energy difference between MOESI and MESI can
be negligible [195], I discuss how MOESI’s elimination of downgrade writebacks is critical in
preventing a source of coherence-induced hammering in §4.3.2.

Directory/Broadcast. In addition to their stable states, coherence protocols can be classified
as directory or broadcast (i.e., directory-less). Upon a private cache miss in a directory protocol,
the requesting core looks up a cache line in a shared directory to determine the line’s location and
coherence state; the directory sends “directed snoops” to fetch a line from the appropriate cache as
necessary to maintain coherence.

In broadcast protocols, no directory exists, and the requesting core instead broadcasts its request
upon a miss to all other caches to check for the line (i.e., “broadcasted snoops”). While broadcast
protocols yield simpler hardware, directory protocols scale better due to reduced coherence traffic
(i.e., snoops are often directed to one cache, as opposed to broadcasted).

ccNUMA Considerations. The primary difference between ccNUMA and single-node proto-
cols is that ccNUMA maintains coherence across multiple nodes. Upon an LLC miss, a broadcast

ccNUMA protocol must send snoops to all other nodes, in case the line is dirty. A directory

ccNUMA protocol can instead consult a multi-node directory, whose state determines whether
snoop(s) must be issued (e.g., if the line is dirty). Given the premium placed on inter-node (e.g.,
QPI/UPI [100,213]) bandwidth, both Intel and AMD have opted to reduce snoop traffic by default-
ing to directory ccNUMA protocols since at least 2017 [54, 121, 165, 202].

In a directory ccNUMA protocol, home agents can track the local state of their lines via a single-
node directory that Intel calls the snoop filter [203, 334]. However, the agents need additional
mechanisms to track the remote state of lines. Thus, in the Intel hardware investigated in this
work, a ccNUMA directory is provided in DRAM (“below” individual nodes), akin to how the
snoop filter is located “below” private caches.

As shown in Fig. 4.1, Intel repurposes 2/64 bits available in DDR4 DRAM for each line’s ECC
as memory directory bits, such that the bits are retrieved for “free” when the line is fetched. The
bits can encode three coherence states [208]: snoop-All means the line is potentially dirty on a
remote node, requiring a snoop for both read and write requests; remote-Shared means the line is
potentially present (but clean) on remote node(s), only requiring the copies to be invalidated upon
write requests; remote-Invalid means the line is not remotely-cached.

A line’s memory directory state may become stale (e.g., an A line is not guaranteed to be
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Node 0
Core 0-A Core 0-B

Private Cache Private Cache
LLC+Local Directory (Snoop Filter)

Home Agent+Mem Dir Cache (HitME)

DRAM 0 Data + ECC + Mem Dir DRAM 1 Data + ECC + Mem Dir

UPI

Line + Metadata (Total 576 Bits, Not To Scale)
Mem Dir State (2 Bits) ECC (62 Bits) Data (512 Bits)

10 A (snoop-All)
01 S (remote-Shared)
00 I (remote-Invalid)

Node 1
Core 1-A Core 1-B

Private Cache Private Cache
LLC+Local Directory (Snoop Filter)

Home Agent+Mem Dir Cache (HitME)

Figure 4.1: A simplified Intel Skylake ccNUMA system. Each line maps to a home agent that
maintains coherence across nodes using distributed state. Local state is stored in the LLC+local
directory (snoop filter). Remote state is stored in a line’s memory directory bits. Select remote
state is also stored in an on-die directory cache (HitME [208]) to reduce snoop latency.

dirty—or even present—on a remote node) provided that coherence is maintained. For instance,
a stale A entry preserves correctness (albeit conservatively), simply incurring unnecessary snoops
before ultimately servicing the line from the local node or DRAM.

While snoops can be omitted for lines in S and I, lines in A require snoops, which incur high
latency if a memory directory read is needed. This latency is problematic when inter-node sharing
frequently incurs this penalty (e.g., migratory sharing, “repeated writer-writer”, of lock-protected
data [58, 284]).

To avoid this repeated penalty, each home agent uses an on-die memory directory cache [208,
211] (henceforth referred to simply as a directory cache) for a subset of its lines in A. A directory
cache hit implies the line must be snooped, obviating the need to read directory state from DRAM.
Directory cache entries contain a bit for each node, indicating which node must be snooped, and
are allocated upon cache-to-cache transfers to a remote writer. Thus, only entries for migratory
(i.e., snoop-critical) lines occupy limited on-die area.

4.3 Coherence-Induced Hammering

In this section, I describe how I discovered sources of coherence-induced hammering in Intel’s cc-
NUMA protocols. These phenomena are the first examples known to cause commodity workloads
to exhibit dangerously-high row ACT rates. I consider a row’s ACT rate to be dangerous when
it surpasses its maximum activate count (MAC)—the industry-standard metric for Rowhammer
susceptibility. The MAC is the maximum number of ACTs to a set of aggressor rows within
a refresh window (64 ms in DDR4 [126]) before any bits may flip in victim row(s). Recent
work [52, 147, 261] shows that MACs are falling in newer DRAM, with current MACs as low
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as 20,000. The studies use an alternative metric called HammerCount (HC); these HCs corre-
sponds to half the MAC, given that they are calculated using two aggressor rows to target each
victim.

4.3.1 Introduction and Methodology

I initially observed hammering in commodity workloads while conducting a study of DDR4 mem-
ory access patterns in internal cloud workload benchmarks, used by a major cloud provider. Prior
to this study, only intentional Rowhammer attacks had been shown to surpass a DRAM module’s
MAC, meaning only carefully-crafted (malicious) code was known to risk bit flips.

Our experimental hardware consists of (1) a dual-socket (i.e., ccNUMA) Intel Skylake server
configuration deployed by the cloud provider (2400 MHz, DDR4, 2Rx4 DIMMs with Chipkill [60]
ECC), and (2) a DDR4 bus analyzer. The bus analyzer records timestamped-traces of DDR4
commands (e.g., ACT, RD, WR) and destination DDR4 logical addresses (e.g., bank, row, column)
sent from a memory controller to a DIMM. The analyzer records up to 512 million commands,
meaning different programs can be recorded for different amounts of time due to varying amounts
of DRAM traffic.

I run Ubuntu Linux 20.04 with KVM [157] as our host OS, conducting experiments outside of
production to protect customer privacy. Commodity benchmarks are executed in guest VMs, also
running Ubuntu 20.04. Unless otherwise noted, all BIOS settings are the cloud provider’s defaults.

For brevity, I provide evidence of hammering in two different cloud workloads (mem-

cached [133] and terasort [230]), based on internal benchmarks used by the cloud provider. I
show that PARSEC 3.0 [344] and SPLASH-2x [321] benchmarks exhibit similar behavior in §4.6.

For memcached and terasort, I record at least 10 seconds of execution per trace, given bus
analyzer storage limits. I calculate the maximum number of ACTs to a single row within any
64 ms refresh window across all traces, and compare this number to modern MACs to assess
Rowhammer risk. I measure ACT rates because they provide a relatively-stable metric to reason
about Rowhammer across a fleet of servers. In contrast, different DIMMs’ susceptibilities to bit
flips vary by DRAM vendor, generation, process node variation, TRR implementation, and other
factors.

To our surprise, both cloud workloads experience over 20,000 ACTs to a single row within 64
ms (nearly 40,000 for terasort), surpassing modern MACs and therefore risking bit flips. Further-
more, these ACT rates are almost certainly under-estimates, given that I can only record traffic to
1 DIMM out of the many DIMMs used by a workload in a production machine.
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MESI
C0 C1 Shared Memory Copy
M I Stale (C0 has dirty copy)
S S Up-to-Date (written back)

MOESI
C0 C1 Shared Memory Copy
M I Stale (C0 has dirty copy)
O S Stale (C0 has dirty copy)

Event
C0 writes
C1 reads

Figure 4.2: Dirty sharing in MOESI (left) versus a downgrade writeback in MESI (right). MESI’s
lack of O (dirty+read-only) means dirty lines must be written back (cleaned) to be shared.

4.3.2 Source #1: Downgrade Writebacks

To determine the root cause(s) of hammering in commodity workloads, I conducted further analysis
of the DDR4 access traces. I noticed that in the maximally-activated (hottest) rows, frequently-
accessed cache lines often experienced more DRAM writes than reads. This observation was
puzzling, as conventional wisdom indicates commodity workloads should almost always yield
more DRAM reads than writes.

More specifically, (1) read-only (always clean) data traditionally only requires reads (i.e., no
subsequent writebacks), and (2) writes to a word-sized segment (e.g., 8 bytes) in a 64-byte line
require a preceding line read to preserve the non-modified portion of the line (unless it is known
the entire line will be modified). If a clean line only produces a read, and a dirty line generally
produces a read and a write, one would expect to observe more reads than writes.

However, there is a confounding factor in ccNUMA systems: DRAM, not the LLC as in single-
node systems, is the point of coherence (i.e., the first level of the memory hierarchy shared among
all cores). Thus, coherence traffic that traditionally goes to the LLC in a single node system may
now go to DRAM, altering the “conventional” read-write ratio.

One known source of coherence writes are downgrade writebacks [220], incurred in MESI-
based protocols (i.e., Intel server protocols [85, 135]). At a high level, the writeback occurs when
a dirty line is shared with another cache, such as producer-consumer sharing [48] (repeated writer-
reader).

For instance, in Fig. 4.2, core C0 has a dirty copy of a line, and core C1 requests a read-only
copy. Given the single-writer, multiple-reader invariant (§4.2.3), lines valid in multiple cores’
caches must be read-only, meaning C0 must transition from M (dirty+writable) to a read-only
state to share the line.

While a conventional MOESI protocol (left) allows the responder C0 to transition M → O
(where O encodes dirty+read-only), MESI’s sole read-only state is S (clean+read-only). Thus,
MESI (right) instead incurs a downgrade writeback, such that C0’s and C1’s copies of the line
become clean (S) to satisfy protocol requirements.

To test the theory of hammering via ccNUMA downgrade writebacks, I pinned our workloads
to a single node—so that downgrade writebacks would go to the node’s LLC, not DRAM—and
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Figure 4.3: Activation (ACT) rates on a major cloud provider’s production hardware for (a) com-
modity benchmarks and (b) worst-case micro-benchmarks. In both cases, dirty sharing across
NUMA nodes yields ACTs in excess of current Rowhammer thresholds (MACs).

recorded new traces. As shown in Fig. 4.3(a), the ACTs observed for the cloud workloads (along
with micro-benchmarks discussed shortly) drastically dropped, from 21,917 to 6,349 (memcached)
and 39,031 to 8,369 (terasort). Furthermore, I observed more reads than writes for cache lines
within the hot rows, as conventionally expected. This provided strong evidence that downgrade
writebacks were causing frequent DRAM writes and preceding ACTs.

To confirm this evidence, I wrote a micro-benchmark (prod-cons) designed to generate
coherence-induced hammering via downgrade writebacks. More specifically, the benchmark
schedules two threads: a producer and a consumer. The producer repeatedly writes to two dif-
ferent cache lines at physical addresses A and B in an alternating fashion, while the consumer
repeatedly reads these lines in an alternating fashion. When the consumer reads the producer’s M
copies, a downgrade writeback should occur per MESI requirements.

Notably, I select physical addresses A and B such that they map to different rows within the
same bank of DRAM. Thus, alternating downgrade writebacks of the lines necessitate repeated
ACTs due to row buffer contention (§4.2.1). I again ran the experiment in two configurations: (1)
with the threads pinned to separate NUMA nodes, where downgrade writebacks go to DRAM, and
(2) with both threads pinned to a single node, where downgrade writebacks go to the node’s LLC.

Echoing the cloud workload data, Fig. 4.3(b) shows that the multi-node execution of prod-cons
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produces “hammer-level” rates of ACTs (over 250,000 ACTs in 64 ms to a single row, > 10×
modern MACs), while the single-node execution does not hammer (just 129 ACTs in 64 ms). The
multi-node experiment is therefore indicative of “worst-case” behavior for ccNUMA downgrade
writebacks.

After confirming clean sharing (i.e., read-only, and thus free of downgrade writebacks) did not
yield hammering in either configuration, I concluded that downgrade writebacks are a source of
coherence-induced hammering.

Thus, workloads exhibiting producer-consumer sharing can inadvertently yield coherence-

induced hammering on Intel ccNUMA servers. Adversaries can also intentionally hammer by
using this common sharing pattern across NUMA nodes—without previously-exploited primitives
like cache line flushes, eviction sets, or DMAs.

4.3.3 Source #2: Memory Directory Writes

To determine if downgrade writebacks are the only source of coher-ence-induced hammering on
Intel ccNUMA servers, I wrote a second micro-benchmark designed to (1) still generate dirty shar-
ing between cores, but (2) not incur downgrade writebacks. Intuitively, if downgrade writebacks
were the only hammering source, then our benchmark would not hammer.

Our second micro-benchmark—migra—is similar to the previous, except both threads write to
the line (i.e., migratory sharing [58,284], or “repeated writer-writer”). Because Intel’s MESI-based
protocol requires a downgrade writeback upon a Get-Shared (read-only) request for a line in M,
I avoid downgrade writebacks by only sending Get-eXclusive (read-write) requests between the
cores (via stores).

More specifically, if core c1 has a line in M—and core c2 issues a Get-X for the line—core c1

sends its copy to c2 and transitions M → I. Thus, c2 receives the line in M (for its own writing)
without a writeback. Notably, the behavior of this sharing pattern is identical in conventional
MESI and MOESI protocols (given the S/O states are not used). Thus, our experiment offers
insight both on how the existing Intel protocol behaves and an otherwise-identical MOESI protocol
would behave. Our simulations comparing MESI and MOESI implementations in §4.6 confirm this
reasoning.

As with prod-cons, I run migra with the threads scheduled on different nodes and on the same
node. I refer to migra executed atop the default memory directory ccNUMA protocol as migra

(dir), in order to differentiate from a separate execution discussed shortly. Fig. 4.3(b) shows that
the multi-node experiment still hammers (165,233 ACTs). Furthermore, I find the contended cache
lines again experience more writes than reads in DRAM. In contrast, and as expected, the single-
node experiment does not hammer.
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I discovered that others had also reported unusually-high DRAM writes on Intel Skylake
servers [120], and suspected memory directory (§4.2.3) writes as the cause. In particular, re-
mote requests for a local cache line may require a DRAM write to track remote copies via memory
directory state [202,203] (e.g., remote-Invalid → snoop-All), incurring extra writes. Furthermore,
because the on-die directory cache for select A lines uses write-on-allocate [208] (akin to write-
through), even directory cache allocations immediately incur DRAM writes.

I reran our migratory sharing micro-benchmark with the default memory directory protocol
disabled in the BIOS—reverting to a broadcast ccNUMA protocol to execute migra (broad)—
to isolate memory directory writes as the culprit. I found that the write-based hammering was
eliminated when executing migra (broad) across NUMA nodes. I therefore conclude that memory
directory writes are another source of coherence-induced hammering in Intel’s and an otherwise-
identical MOESI memory directory protocol during dirty sharing.

4.3.4 Source #3: Speculative Reads

While I no longer observed write-based hammering, I instead observed read-based hammering
caused by the same lines in migra (broad)—421,360 ACTs in Fig. 4.3(b). In fact, I consistently
noticed repeated reads of the contended lines in migra (dir) as well, albeit two orders-of-magnitude
fewer than migra (broad). This hammering was again eliminated when pinning the workload to a
single node, indicating a third source of coherence-induced hammering.

Suspecting hardware prefetching as the source of hammering reads, I disabled all prefetchers
listed in the BIOS, but still observed repeated reads of the lines. Thankfully, prior work [120,202]
notes an additional source of DRAM reads in broadcast protocols: speculative reads by the home
agent.

Namely, upon an LLC miss, broadcast protocols tend to do two operations in parallel as a
performance optimization: (1) broadcast snoops to other nodes, and (2) speculatively read from

DRAM—jump-starting the read that becomes necessary if the snoops fail. Therefore, because
migratory sharing among NUMA nodes induces frequent LLC misses for the shared line(s), I be-
lieve the corresponding mis-speculated (unused) DRAM reads form a source of coherence-induced
hammering.

In particular, during migratory sharing, the line is often (and during our stores-only micro-
benchmark, essentially always) in M on one of the nodes, meaning no valid copies exist on other
nodes. Thus, if node n1 holds the line in M, and a core on node n2 requests a copy, the request
incurs an LLC miss. Subsequently, the home agent issues, in parallel, (1) snoops to the other nodes,
one of which will return n1’s dirty copy of the line, and (2) a speculative DRAM read, which will
go unused due to the successful snoop response from n1. As the sharing pattern repeats, so too do
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the mis-speculated (unused) DRAM reads, yielding coherence-induced hammering.
To explain the reduced—but nonetheless repeated—number of reads when using the default

directory protocol, recall that directory cache hits obviate the need for DRAM reads of migratory
lines, since they indicate the line must be snooped (§4.2.3). Thus, I infer that the remaining reads
appear to indicate directory cache misses. Because our micro-benchmark only migrates two lines
between the nodes, I find it unlikely that the misses arise from set conflicts in the directory cache
(i.e., conflict misses).

Instead, I believe a phenomenon similar to a documented [54] behavior in AMD’s MOESI
directory protocol is occurring. In particular, when a remote request arrives at the home agent,
AMD issues speculative DRAM reads in parallel to local LLC lookups to reduce latency. While
Intel’s directory cache can prevent these speculative DRAM reads, their patent [208] indicates
entries are de-allocated when the local node requests a copy of the line (since, under MESI, the
remote will no longer be dirty after responding to the request, obviating the performance benefit
of a directory cache entry).

Thus, if a remote request for the line arrives at the home agent after de-allocation, a direc-
tory cache miss occurs. At this time, I believe a DRAM read and (local) snoop occur in parallel,
just as in AMD’s MOESI directory protocol and Intel’s MESI broadcast protocol. This explains
the remaining hammering DRAM line reads in our directory traces. Therefore, I conclude that
coherence-induced speculative DRAM reads can occur in commodity broadcast and directory cc-
NUMA protocols, irrespective of the use of MESI or MOESI.

4.3.5 Why This Hammering is Problematic

Commodity workloads producing ACT rates known to induce bit flips [52, 147] is a significant
cause for concern among cloud providers for several reasons. First, recent studies of data center
reliability (e.g., Facebook [66] and Google [104]) have found increasing rates of silent data cor-
ruption. Given data corruption is a symptom of Rowhammer—and the community is yet unable
to attribute production occurrences to Rowhammer—cloud providers must treat Rowhammer as a
potential cause and take appropriate precautions. In particular, silent corruption yields arbitrary
behavior, while detected-but-uncorrected corruption yields machine check exceptions (i.e., denial-
of-service). Even corrected data corruption, used as a proxy for hardware reaching end-of-life, can
unnecessarily increase costs.

Second, irrespective of whether today’s data corruption arises from Rowhammer, cloud
providers also need to protect data in tomorrow’s DRAM. Unfortunately, future DRAM is ex-
pected to be more susceptible to Rowhammer [147]. Specifically, given the various benefits of
denser DRAM (e.g., performance), manufacturers are projected to increase density—increasing
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Rowhammer susceptibility in turn. This projection is supported by prior work [52, 147, 261],
which shows that newer, denser DRAM (1) requires fewer ACTs per row to flip bits, and (2) can
experience more rows simultaneously surpassing these decreased MACs. Notably, state-of-the-art
Rowhammer attacks [75, 98, 125, 233, 240, 300] already exploit as few as 3 rows simultaneously
surpassing MACs in order to overwhelm existing mitigations (TRR, §4.2.1) and flip bits.

Our traces therefore offer the first evidence that ccNUMA systems depend on (vulnerable) mit-
igations to prevent bit flips triggered by commodity workloads. Furthermore, while TRR can pre-
vent bit flips that would be caused by the small number of simultaneous aggressors observed within
a single benchmark (e.g., 1-2), cloud providers must account for numerous individual applications
simultaneously hammering and thereby bypassing TRR, an increasingly-likely phenomenon given
declining MACs.

Third, while state-of-the-art alternative mitigations [21,199,236,256,336] can provide compre-
hensive protection against bit flips, their performance and area overhead rises with increasing sus-
ceptibility. While it may be acceptable to slow a malicious Rowhammer attack workload, our find-
ing of coherence-induced hammering in commodity workloads demonstrates that non-malicious

applications could additionally experience slowdowns proportional to Rowhammer susceptibil-
ity. Thus, prior work [147, 183] concludes that software vendors such as cloud providers have a
vested interest in exploring and mitigating the phenomena leading to high activation rates before

widespread problems arise.

4.4 Design of MOESI-prime

In light of modern ccNUMA protocols’ susceptibility to coherence-induced hammering, I present
a novel protocol—MOESI-prime—that prevents identified sources of coherence-induced hammer-
ing in both commodity and malicious workloads. Notably, MOESI-prime achieves such protection
while retaining use of Intel’s state-of-the-art memory directory design for scalability.

MOESI-prime is designed as simple, well-defined modifications to a baseline memory direc-
tory protocol. I build atop the MOESI states, given MESI’s susceptibility to hammering downgrade
writebacks (§4.3.2). I describe MOESI-prime’s novel mechanisms to prevent both hammering di-
rectory writes (§4.4.1) as well as hammering speculative reads (§4.4.2), and discuss a safe protocol
performance optimization (§4.4.3).

4.4.1 Preventing Hammering Directory Writes

As discerned in §4.3.3, hammering directory writes occur during repeated dirty sharing across
nodes (i.e., sharing with at least one writer). Thus, MOESI-prime’s goal is to obviate the need for
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Events Loc Rem Mem Dir Mem Wr
A1  MESI: Migratory (Rd-Wr)

- I M A -
Loc-rd S S S Yes
Loc-wr M I S (stale) No
Rem-rd S S S Yes
Rem-wr I M A Yes

A2  MESI: Migratory (Wr-Only)
- I M A -

Loc-wr M I A (stale) No
Rem-wr I M A Yes

A3  MESI: Prod-Cons (Rem Prod)
- I M A -

Loc-rd S S S Yes
Rem-wr I M A Yes

A4  MESI: Prod-Cons (Loc Prod)
- M I I -

Rem-rd S S S Yes
Loc-wr M I S (stale) No

Events Loc Rem Mem Dir Mem Wr
B1  MOESI: Migratory (Rd-Wr)

- I M A -
Loc-rd O S A (stale) No
Loc-wr M I A (stale) No
Rem-rd O S A (stale) No
Rem-wr I M A Yes

Events Loc Rem Mem Dir Mem Wr
C1  MOESI-prime: Migratory (Rd-Wr)

- I M’ A -
Loc-rd O’ S A No
Loc-wr M’ I A (stale) No
Rem-rd O’ S A (stale) No
Rem-wr I M’ A No

B2  MOESI: Migratory (Wr-Only)
- I M A -

Loc-wr M I A (stale) No
Rem-wr I M A Yes

C2  MOESI-prime: Migratory (Wr-Only)
- I M’ A -

Loc-wr M’ I A (stale) No
Rem-wr I M’ A No

B4  MOESI: Prod-Cons (Loc Prod)
- M I I -

Rem-rd O S I (stale) No
Loc-wr M I I No

C4  MOESI-prime: Prod-Cons (Loc Prod)
- M I I -

Rem-rd O S I (stale) No
Loc-wr M I I No

B3  MOESI: Prod-Cons (Rem Prod)
- I M A -

Loc-rd O S A (stale) No
Rem-wr I M A Yes

C3  MOESI-prime: Prod-Cons (Rem Prod)
- I M’ A -

Loc-rd O’ S A (stale) No
Rem-wr I M’ A No

Figure 4.4: Dirty, inter-node sharing in MESI (A1–A4), MOESI (B1–B4), and MOESI-prime
(C1–C4) memory directory protocols. Hammering writes (red) are incurred during arrow-denoted
cycles. MOESI and MOESI-prime prevent MESI’s downgrade writebacks via the O state. MOESI-
prime also prevents MOESI’s redundant writes via new M’ (M + mem dir in A) and O’ (O +
mem dir in A) states. MOESI and MOESI-prime use the “greedy local ownership” optimization
introduced in §4.4.3.

directory writes during repeated dirty sharing. I compare this approach to a writeback directory
cache—which would at-best reduce the frequency of these (as I will show, unnecessary) writes—
in §4.7.2.

Given a local node and one or more remote nodes, I consider dirty sharing between a local and
remote node, as well as between two remotes and among more than two nodes.

4.4.1.1 Local-Remote Sharing

There are two basic forms of repeated dirty sharing: migratory [58, 284] (writer-writer) and
producer-consumer [48] (writer-reader). Each pattern can be divided into two subcategories. For
migratory, there is (1) read-write (where the writers read the line before writing) and (2) write-only.
For producer-consumer in ccNUMA, there is the case of a (3) remote producer versus a (4) local

producer.
Thus, Fig. 4.4 shows how MESI (A1–A4), MOESI (B1–B4), and MOESI-prime (C1–C4)

memory directory protocols behave during these scenarios. MESI hammers during all forms of
dirty sharing, primarily due to downgrade writebacks that are trivially-eliminated by MOESI and
MOESI-prime. I therefore mainly focus on the difference between MOESI and MOESI-prime in
the remainder of this subsection.

In the unique case of producer-consumer with a local producer, remote node(s) (the consumers)
never write to the line. Under MOESI (B4) and MOESI-prime (C4), once the line transitions to M
upon the local node’s first write, it remains dirty on the local node (M or, if shared, O) until written
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back.
Crucially, when remote consumer(s) read the line, the memory directory can remain unchanged

(potentially stale) until the local copy is written back. This is because the home agent must check
the local node for a dirty copy upon a remote request, since the memory directory only tracks
remote coherence state. If a dirty copy is locally-present, the home agent will forward this copy
in lieu of the stale memory copy/directory state. Thus, producer-consumer sharing with a local
producer already does not require repeated directory writes, avoiding directory write-based ham-
mering without changes to a baseline MOESI protocol.

However, in the migratory sharing subcategories and producer-consumer (remote producer),
MOESI can hammer (B1–B3). In particular, when a remote node writes to a locally-owned line,
the home agent has no way of knowing if the memory directory is already in snoop-All (albeit
possibly stale). Thus, the home agent must conservatively (i.e., potentially redundantly) write A
to the memory directory. As the remote writer repeatedly acquires exclusive access under such
sharing, the directory writes repeat, hammering DRAM.

MOESI-prime exploits the insight that these “dirty sharing” writes can be avoided if the home
agent knows the memory directory is already in A. Thus, MOESI-prime provides an additional
“prime” state for each MOESI dirty state (M and O) to encode this information (C1–C3). M’/O’
indicate a line is in conventional M/O, and the memory directory is in A.

Intuitively, the prime (M’ and O’) states’ prevention of repeated directory writes can be likened
to how MOESI’s O state prevents downgrade writebacks. In MOESI-prime, when a remote writer
first writes to a line, the line enters M’ (given it is dirty+writable on the remote node and A in
the memory directory). From this point until the prime line’s eventual writeback, MOESI-prime
enforces two invariants: (1) the line remains prime, and (2) the memory directory is not updated.

Accordingly, the home agent knows any line in M’ (or, if shared, O’) is in A in the memory
directory. Thus, when a remote node writes to a prime line, the home agent can omit the redundant
directory write, preventing hammering.

4.4.1.2 Remote-Remote and > 2-Node Sharing

Fig. 4.4 does not depict dirty sharing between two remote nodes (only between a local and a
remote), because this sharing is already free of hammering directory writes under MOESI (and
hence, MOESI-prime). Specifically, when a remote r1 requests a dirty line from another remote
r2, the home agent knows that the memory directory must (1) already be in A, and (2) remain in
A until the dirty copy is written back, guaranteeing a directory write is not needed. For MESI,
hammering downgrade writebacks occur regardless of which nodes share an initially-dirty line.

Additionally, Fig. 4.4 only shows sharing between 2 nodes. While > 2 nodes can clearly share
a line, the memory directory enters A (and remains in A) so long as any remote holds a dirty copy.

60



If the local node becomes the owner of the dirty copy, the directory entry can be left in A (stale), as
the local dirty copy will be snooped and override the stale copy in DRAM. Thus, additional sharers
do not affect MOESI-prime’s ability to prevent hammering directory writes.

4.4.2 Preventing Hammering Speculative Reads

MOESI-prime’s key insights for preventing speculative hammering reads are that (1) these reads
arise under the same “dirty sharing” scenarios as redundant directory writes (§4.3.4), and (2) re-
quests that hit in the directory cache do not result in DRAM reads. Thus, MOESI-prime’s goal is
to ensure that requests for contended lines almost always hit in the directory cache, whether issued
by local or remote nodes.

Unlike hammering directory writes, MOESI-prime does not use additional state to prevent ham-
mering reads. Instead, MOESI-prime makes a minor modification to the directory cache behavior
described by Intel’s patent [208]. Rather than de-allocating/not allocating a directory cache entry
when a line migrates to a local writer, MOESI-prime retains/provisions an entry, now pointing
to the local node. Thus, subsequent requests will hit in the directory cache, avoiding speculative
DRAM reads.

While this policy yields additional contention for directory cache entries, the only lines affected
are those that are either (1) cache-to-cache transferred to a remote writer (such that a directory
cache entry is allocated), and then transferred to a local owner, or (2) invalidated on remote node(s)
by a local writer. As I will show in §4.6, MOESI-prime has negligible effect on performance versus
MESI and MOESI baselines, despite this modest increase in contention.

I note that even with MOESI-prime’s policy, repeatedly generating set conflicts in the directory
cache remains a possible way to maliciously hammer, since the conflict-induced misses could re-
sult in hammering reads. However, unlike coherence-induced hammering, I find no evidence of
conflict-induced hammering in commodity workloads. Furthermore, conflict-induced hammering
can be mitigated via existing mechanisms to prevent frequent set conflicts [29, 239, 243, 244, 254,
318], which are complementary to MOESI-prime’s protection against coherence-induced hammer-
ing.

4.4.3 Optimization: Greedy Local Ownership

Prior work [6,210] shows that MOESI-based protocols can implement different ownership policies
without loss of correctness when sharing dirty lines. The ownership policy designates whether the
requesting cache or responding cache ends a transaction as the line owner. For instance, in the
conventional MOESI protocol depicted in Fig. 4.2 (§4.2.3), the responder (C0) retains ownership
(M → O) while the requestor (C1) enters S. Conversely, in AMD’s “Always-Migrate” ownership
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policy [174], the responder C0 relinquishes ownership (M → S), and the requestor C1 acquires
ownership (enters O).

I provide the additional insight that MOESI-based protocols can optimize the ownership policy
for improved ccNUMA performance. Consider that (1) an inter-node request goes to the home
agent, (2) the home agent forwards the request to the owner, and (3) the owner responds to the
requestor. If the owner is local (i.e., on the home agent’s node), a NUMA hop (interconnect
traversal) can be avoided in step (2). Thus, there is benefit in making the local node the owner
when possible.

MOESI-prime (and our MOESI baseline) accordingly incorporate a greedy local ownership

policy to reduce interconnect traffic and latency, as used in Fig. 4.4. This policy ensures that if a
dirty line is shared for reading between a local and remote node (i.e., upon a Get-Shared request)
the local node ends the transaction as the owner (O/O’), while the remote becomes a sharer (S).
Subsequent requests for the line are thus forwarded to this local owner, reducing NUMA latency
and contention.

4.4.4 Key Takeaway

MOESI-prime prevents each of the identified sources of coherence-induced hammering: down-
grade writebacks via O/O’, directory writes via new M’ and O’ states, and speculative reads via
changes to Intel’s directory cache management policy. In §4.6, I show that these protections pre-
vent coherence-induced hammering across a broad range of non-malicious and malicious work-
loads.

4.5 Protocol Correctness

In this section, I demonstrate that MOESI-prime’s two key protocol extensions—the prime (M’
and O’) states and directory cache modifications—preserve coherence. I do so by showing that the
addition of MOESI-prime’s extensions to an initially-correct baseline memory directory protocol
does not allow programs to produce previously-forbidden results.

I assume an Intel-like MESI baseline can be extended with the widely-used O state to form
an otherwise-identical MOESI protocol. I thus reason about MOESI-prime in the context of a
MOESI baseline. I also assume that the MOESI baseline correctly implements greedy local own-
ership (§4.4.3), noting that prior work [6,174,210] demonstrates the validity of denoting either the
requestor or responder as the owner.

I additionally note that MOESI-prime’s detailed set of coherence states and transitions (along
with those of the baseline protocols) are provided in our open-source implementation [185].
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4.5.1 Correctness of M’ and O’ States

For this proof, I model ccNUMA systems as transition systems [15] with states S and a transition
relation T . Each state in S represents a state of the entire system at one point in physical time,
including all coherence states and the values of every cache line and address in main memory read
from or written to by program instructions. A state s1 can transition to a state s2 (i.e., (s1, s2) ∈ T )
if a valid coherence state transition for a cache or directory in state s1 can lead to state s2, or if the
writing of a value to a cache line or directory entry can change s1 to s2. I define a trace (i.e., an
execution) of a transition system (S, T ) as a sequence s0s1s2s3...sn where s0 ∈ S represents the
state of the system upon startup and ∀ 1 ≤ i ≤ n, si ∈ S ∧ (si−1, si) ∈ T .

Let D and D′ be transition systems where D represents the baseline MOESI system and D′

represents this baseline with the addition of the M’ and O’ states. To prove the correctness of
adding the prime states, I first prove the following lemma.

Lemma 1 Consider any cache line l. Let s1 be a state that exists in D and D′, meaning no cache

has a copy of l in M’ or O’. Assume that s1 in D′ can transition to a state s′2 in D′ which has a

line for l in M’ or O’. For the case of D, s1 can transition to s2, which is identical to s′2 except that

M’ and O’ are replaced by M and O. In addition, define a completed Put as a Put request (i.e.,

writeback) for l that is processed by the directory without another core acquiring ownership of l

during the transaction (e.g., by a Get-X reaching the directory before the Put). Then, the following

conditions hold:

1. s2 and s′2 will have memory directory states of A.

2. In the subsequent execution of D, the memory directory state for l will remain A until a

completed Put occurs.

3. In the subsequent execution of D′, once a completed Put occurs, no core can then transition

to M’ or O’ for l until a core becomes a remote owner of l.

Proof. Condition (1): Starting from state s1 in D′, a line for l has no way to enter O’ without
entering M’ first. From state s1, a line for l may enter M’ in s′2 in one of two ways, both through
the actions of a remote core R. First, R may issue a Get-X request for l. This results in R receiving
the line in M’ and the memory directory entry for l being updated to A. The second possibility is if
R was in E for line l in s1, and then silently wrote to the line l and transitioned to M’. In this case,
the memory directory would have been set to A when R entered E, and would have remained in A
through the transition to M’. This is because changing the memory directory state would require
another core to request the line, which would result in R losing its write permissions and thus
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being unable to transition to M’. The two scenarios in D equivalent to these cases can be obtained
by replacing M’ with M. In both cases, the memory directory is set to A in s2. Since the memory
directory is in A in s2 and s′2, condition (1) is fulfilled.

Condition (2): Once the memory directory state in D is A, by the transition rules of the protocol,
the only way for the directory state to change to something other than A is for the owning core to
execute a Put request (either Put-X or Put-O for M and O respectively). If this is a completed
Put, the directory state will change to I (for a Put-X) or S (for a Put-O). Note that if a concurrent
request that results in ownership is processed by the directory before the Put (i.e., the Put is not
a completed Put), ownership will be transferred to the requestor and the requestor will transition
to M or O as appropriate. While the previous owner’s Put will be acknowledged, the memory
directory state will remain in A due to there still being an owner in the system. Thus, condition (2)
is satisfied in all cases.

Condition (3): Consider the execution of D′ from s′2 onwards. Once a core transitions to M’
for l in s′2, an instance of M’ or O’ for l will remain in the system as long as there is an owner, i.e.,
until a completed Put occurs. Consider the first such completed Put. By the rules of the protocol,
this completed Put must have been issued by the owning core, denoted by C. By virtue of being
the owner, C must be in M’ or O’ when issuing the Put, and thus no other cores can be in M’ or
O’ at this point. Furthermore, since C’s Put is a completed Put, no other core will gain ownership
before C’s Put is processed by the directory. The completed Put will relinquish C’s ownership
(i.e., C will no longer be in M’ or O’). Thus, no instances of M’ and O’ remain in the system for
line l. Any subsequent instances of M’ and O’ in the execution must arise from a core becoming
a remote owner of l through one of the two possibilities discussed in the proof of condition (1).
Thus, condition (3) is satisfied.■

Using Lemma 1, I can prove Theorem 1 below, showing that M’ and O’ do not introduce new
program outcomes.

Theorem 1 For every trace d′ that can be generated by D′, there exists a trace d that can be

generated by D such that the values of every cache line and address in main memory in the final

states of d and d′ are identical.

To prove Theorem 1, I create trace d by substituting all instances of M’ by M and O’ by O in
the trace d′. M and O are semantically equivalent to M’ and O’ respectively, apart from the writes
to the memory directory that M and O add. Thus, as long as the extra memory directory writes
added by this substitution do not change the memory directory state, trace d will be a valid trace
for the baseline MOESI system D (since d does not contain any instances of M’ or O’).

Any such extra memory directory writes in d will occur over the events in d corresponding to
those in d′ between when a core entered M’ for a given line and when the next completed Put for
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that line occurred. (The completed Put of a line removes all existing instances of M’ and O’ for
that line from the system by condition (3) of Lemma 1). By conditions (1) and (2) of Lemma 1,
the memory directory state is guaranteed to be A over these ranges for any such lines in d. Thus,
any extra memory directory writes in d are guaranteed not to change their corresponding memory
directory states from A to another state. As a result, all the coherence transitions in trace d remain
valid transitions. Trace d is thus a valid trace in the baseline MOESI system. Since I do not change
the values of cache lines or main memory when creating trace d from d′, the final states of d and
d′ have identical values for every cache line and main memory address that they model. d thus
satisfies the requirements of Theorem 1.■

4.5.2 Correctness of Directory Cache Modifications

MOESI-prime’s directory cache modifications eliminate select speculative DRAM reads, based
on the understanding that the results of the eliminated reads will always be discarded due to mis-
speculation. In the baseline protocol, a hit in the directory cache implies that the line is dirty on
a remote node. Thus, DRAM need not be read on a directory cache hit, as a snoop of the remote
owner will succeed and return the data (§4.3.4).

While the baseline does not provision a directory cache entry if the home node becomes the
owner (as described in Intel’s patent [208]), MOESI-prime’s modification ensures that a directory
cache entry also exists in this scenario, pointing to the local node. Thus, the invariant that a
directory cache hit means that a snoop will succeed is maintained under MOESI-prime.

Specifically, in the new case where the directory cache entry corresponds to local node own-
ership, it is the local node that will service a snoop, once again making it unnecessary to read
DRAM. In addition, since the local node is a dirty owner, an eviction requires a writeback, en-
suring the directory cache’s knowledge will remain current. If ownership is transferred back to a
remote node, the directory cache entry will be updated to point to the remote node, and speculative
DRAM reads will be prevented according to the baseline policy.

4.6 Evaluation

I evaluate MOESI-prime in gem5 v21.1.0.2 [24, 188]. I extend an existing directory coherence
protocol in the Ruby subsystem to model Intel’s memory directory and directory cache. I use a
full-system mode configuration with simulation parameters, such as total cache per core and clock
speed, that model a major cloud provider’s production hardware. For tractable simulation times,
I use simple in-order cores atop detailed cache, coherence, and DRAM models. This configura-
tion follows prior work [82], which demonstrates that out-of-order versus in-order execution does
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Parameter Value
TimingSimpleCPU x86-64, 2.6 GHZ, 8 cores (no SMT), cycle-accurate instr fetches + loads/stores, else 1 cycle/instr; non-pipelined
I-/D-Cache 32 KB, 8-way set associative (SA), 4 cycle RT latency
LLC 2.375 MB/core, 32-way SA, 42 cycle RT, non-inclusive
Directory Cache 16 KB/core, 1B entry, 32-way SA, parallel access w/ LLC
DRAM 16 GB DDR4, 2400 MHz, 2Rx4 (32 banks/node), FR-FCFS [253] scheduling, RoCoRaBaCh [95] address mapping,

adaptive page policy, mean 37.5 ns read RT to home agent
NUMA 2, 4, 8 nodes; cores+mem split/node; 32 ns RT interconnect
OS/Kernel Config Ubuntu 20.04/Linux 5.4.0-88-generic (except as noted)

Table 4.1: gem5 simulation configuration.

not significantly affect the memory system characterization of commodity workloads, given the
detailed memory system model.

I run the Ubuntu 20.04 operating system with its default kernel configuration, aside from
patches to (1) remove unsupported drivers, and (2) infer the gem5 hardware’s NUMA configu-
ration from a boot parameter, since gem5 does not implement BIOS mechanisms that normally
report this information to the OS. Our system configuration is listed in Table 4.1.

I compare MOESI-prime to MOESI and MESI memory directory protocols, with the respective
protocol enforced for inter-node coherence. For a fair performance comparison, both applicable
protocols (i.e., MOESI-prime and MOESI) use our greedy local ownership optimization (§4.4.3).
I evaluate 2-node (production-like), 4-node, and 8-node configurations. Cumulative amounts of
cache, DRAM, and cores are held constant, split evenly among nodes.

I run 8-thread (1 per core) benchmarks from the PARSEC 3.0 [344] and SPLASH-2x [321]
suites, simulating the region-of-interest for each benchmark with the simmedium input size. I
omit 3/26 benchmarks due to runtime errors on real hardware (fmm [260]) and use of unsupported
x86-64 instructions in gem5 (volrend and x264 [79, 80, 188]). I are unable to additionally sim-
ulate memcached and terasort (§4.3.1) due to lack of functional IP networking in gem5 for our
configuration. For malicious workloads, I use producer-consumer (prod-cons, §4.3.2) and migra-
tory sharing (migra, §4.3.3) micro-benchmarks that trigger coherence-induced hammering in the
baseline protocols.

4.6.1 Highest Activation Rate

To assess the effectiveness of MOESI-prime’s mitigations, I analyze the maximum number of
ACTs to a single row within any 64 ms refresh window during benchmark execution.

4.6.1.1 Non-Malicious Workloads

Fig. 4.5 depicts the highest ACT rates for each PARSEC 3.0 and SPLASH-2x benchmark, as well
as the arithmetic mean per configuration.
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Figure 4.5: Highest ACT rates for PARSEC 3.0 [344] and SPLASH-2x [321] benchmarks across
MESI, MOESI, and MOESI-prime.

I find that MOESI-prime’s mitigations for coherence-induced hammering reduce highest ACT
rates on average by 77.38% (2-node), 75.30% (4-node), and 71.06% (8-node) compared to MESI.
In contrast, MOESI only prevents downgrade writebacks, and achieves at best a 34.71% decrease
(8-node), with just a 5.58% decrease in the 2-node configuration.

Under MOESI-prime, each benchmark’s maximally-activated row receives an average of
20.62%, 26.81%, and 28.29% (2-, 4-, 8-nodes) coherence-induced ACTs—i.e., ACTs due to
memory directory reads/writes (and downgrade writebacks in the case of MESI). In contrast, the
maximally-activated rows under MOESI experience an average of 94.53%, 88.01%, and 85.78%

coherence-induced ACTs, demonstrating that MOESI-prime eliminates coherence traffic as the
dominant source of ACTs. While MESI’s numbers are skewed by downgrade writebacks (which
can yield subsequent demand reads), I find that coherence-induced ACTs are still the dominant
source for the maximally-activated rows (85.29%, 74.85%, and 53.31%).

I additionally find that MOESI-prime’s second maximally-activated row in the same bank dur-
ing each benchmark’s “worst-case” 64 ms window sees ACT rates decline by 29.99%, 29.07%,
and 44.41% (2-, 4-, 8-nodes) on average compared to the maximally-activated row. The baselines’
larger average decreases (MOESI: 64.50%, 56.04%, 69.07%; MESI: 67.86%, 55.84%, 75.45%)
indicate that it is common for a single row to experience significantly more coherence-induced
hammering than the rest within a bank.

MOESI-prime’s increase in highest ACT rates for 4- and 8-node configurations is expected, and
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still results in significant reductions over the MESI and MOESI baselines. These configurations
(1) represent increasingly-strained scheduling scenarios (e.g., all sharing is inter-node in the 8-
node configuration), (2) artificially-reduce directory cache size per node to keep the total amount
constant, and (3) require the directory cache to cover a greater portion of remote memory (e.g.,
7/8 of memory is remote for 8 nodes, compared to 1/2 for 2 nodes). Nonetheless, the remaining
possibility of high maximum ACT counts (e.g., fft with 8 nodes, with 48.41% of these ACTs
still coherence-induced directory reads/writes) shows (a) room for further improvement (e.g., via
atomic directory read-modify-writes to yield 1 ACT instead of 2), and (b) the benefit of scheduling
workloads across as few NUMA nodes as possible.

I conclude that MOESI-prime’s mitigations for coherence-induced hammering are extremely
effective at reducing highest ACT rates in non-malicious workloads.

4.6.1.2 Malicious Workloads

I find that both MESI and MOESI allow highest activation rates to surpass 500,000 to the shared
cache lines’ rows within 64 ms during prod-cons and migra. Conversely, MOESI-prime keeps
highest ACT rates below 200 per 64 ms, a >2,500× improvement, and the hottest rows are not

those of the shared cache lines (meaning MOESI-prime prevents hammering of the contended
rows).

4.6.2 Performance

I depict MOESI-prime’s and MOESI’s per-benchmark execution speedup across 2-, 4-, and 8-
node configurations in Table 4.2 (§4.6.2), normalized to respective MESI baselines. I find that
MOESI-prime’s mitigations for coherence-induced hammering yield negligible performance im-
pact compared to MESI and MOESI (−0.51%–+0.61%, depending on the configuration and base-
line protocol).

MOESI-prime can improve performance in many workloads thanks to its elimination of un-
necessary DRAM reads and writes. In particular, this elimination yields reduced contention for
DRAM bandwidth and line-fill/writeback buffers.

Nonetheless, select workloads can experience slightly decreased performance under MOESI-
prime for multiple reasons. First, an unnecessary speculative read or redundant write in the
baselines—eliminated by MOESI-prime—may activate a row that will be used by a subsequent
read, decreasing the subsequent read’s latency via a row buffer hit. Second, a speculative read may
prevent a switch to write scheduling in a DRAM controller, avoiding a bus-turnaround latency
for subsequent reads. Third, MOESI-prime’s increased usage of the directory cache to prevent
hammering speculative reads can evict entries that would otherwise speed up remote snoops.
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§4.6.2: MESI-Normalized Execution Speedup %
2-node 4-node 8-node

Bench MOESI Prime MOESI Prime MOESI Prime
blacksc. +0.01 -0.04 +0.00 +0.00 +0.01 +0.01
bodytra. -0.73 +0.03 +0.00 -0.12 +0.03 -0.01
canneal -3.97 -3.97 +0.09 +0.08 +0.03 +0.03
dedup +8.32 +6.06 +10.77 -1.44 -1.13 -0.40

facesim -0.86 +0.07 +0.02 -0.17 -0.02 -0.08
ferret +6.36 +1.18 -0.85 +3.45 -3.50 -2.24

fluidan. +0.20 +0.20 -0.27 -0.01 +0.58 +0.53
freqmine +0.12 +0.11 +0.12 -0.05 -0.12 +0.04
raytrace -0.55 -0.30 -0.36 -0.28 -0.08 +0.35
streamc. +0.43 +0.02 +0.78 +0.76 -0.34 -0.22
swapti. +0.00 -0.00 +0.00 +0.01 -0.59 -0.59

vips -0.02 -0.08 +0.15 +0.09 +0.35 -0.04
barnes +0.46 +2.63 +0.31 +0.63 -0.16 +0.18

cholesky +1.70 +1.72 +0.41 +0.26 -1.48 -1.32
fft -0.03 +0.14 +0.42 +0.19 +0.50 +0.47

lu cb +1.06 +1.37 -0.07 +2.02 +0.15 +0.15
lu ncb +1.20 +1.51 +0.67 -1.24 +0.21 +0.64

ocean c. +0.81 +0.07 +1.86 +1.79 +0.19 -4.51
ocean n. +0.22 -0.43 +1.74 -0.60 -0.02 -0.52
radiosi. +0.59 +0.59 +0.12 -0.46 -0.35 -1.12
radix +0.04 +0.19 +7.08 +7.92 +1.00 +1.21

water n. +0.01 +0.02 +0.35 +0.37 -0.15 -0.05
water s. -1.27 +0.00 +0.88 +0.85 +0.92 +0.88

AVG +0.61 +0.48 +1.05 +0.61 -0.17 -0.29

§4.6.3: Power Saved §4.6.4: 2n-Normalized Speedup
MOESI Prime Nodes MESI MOESI Prime
+0.00% +0.22% 2 - - -
+0.06% +0.12% 4 -0.52% -0.04% -0.31%
+0.02% +0.06% 8 +0.18% -0.60% -0.55%

Table 4.2: Protocols’ MESI-normalized execution speedups (§4.6.2), average DRAM power sav-
ings (§4.6.3), and 2-node- (2n-) normalized execution speedup (scalability, §4.6.4). Higher is better
in each subtable. “Prime” is MOESI-prime.

Finally, we note that the performance of benchmarks such as dedup and ferret is particularly-
sensitive to thread scheduling [23]. Given scheduling is altered both by different NUMA configu-
rations and protocol timings, such sensitivity can lead to higher performance variability.
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4.6.3 DRAM Power

I assess MOESI-prime’s effects on DRAM power consumption using gem5’s support for DRAM-
Power [42], comparing to 2-, 4-, and 8-node MOESI and MESI protocols in Table 4.2 (§4.6.3). I
find that MOESI-prime’s prevention of unnecessary DRAM reads and writes slightly improves av-
erage power consumption (0.03%–0.22%, depending on the ccNUMA configuration and baseline
protocol).

4.6.4 Scalability

I measure each protocol’s scalability by comparing its performance in all 4- and 8-node configura-
tions to its 2-node baseline in Table 4.2 (§4.6.4). Each protocol exhibits negligible (within ±1%)
differences in scalability across evaluated configurations. I conclude that MOESI-prime offers
similar scalability to MESI and MOESI.

4.7 Discussion

4.7.1 Broader Applicability

Coherence-induced hammering occurs during commodity workload execution on broadcast and
memory directory Intel ccNUMA protocols, with AMD documentation [54] indicating similar
coher-ence-induced speculative DRAM reads. Thus, such hammering applies to numerous com-
modity protocols. As Intel, AMD, and ARM deploy chiplet architectures for increased scalability
and yield [3, 25, 116, 222], the chiplets in even a single socket will form a ccNUMA system, re-
quiring careful design to avoid coherence-induced hammering. Additionally, given heterogeneous
coherence [5, 238, 278] can be architected similar to ccNUMA (e.g., with accelerators as remote
nodes), MOESI-prime’s mitigations could extend beyond the realm of traditional ccNUMA.

4.7.2 Limitations of a Writeback Directory Cache

Recall that the directory cache uses a write-on-allocate policy (§4.3.3), where snoop-All (poten-
tially dirty on a remote) is written to the memory directory upon allocation. Given such writes are
a source of coherence-induced hammering, a writeback directory cache might appear to be an easy
solution.

However, while MOESI-prime’s M’ and O’ states prevent redundant directory writes, a write-
back directory cache can at-best delay/reduce them. Capacity evictions of entries for (would-be)
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M’/O’ lines would still result in unnecessary writes—consuming DRAM cycles, bandwidth, and
power—and could still be abused by a malicious adversary to hammer.

Furthermore, the write-on-allocate policy ensures that directory cache entries can be silently
evicted (or even detectably-corrupted) without loss of correctness, as the backing memory directory
entry is guaranteed to be in (conservatively-correct) A and can thus be used instead. On the other
hand, a writeback directory cache eliminates this guarantee, requiring additional on-die area for
error correction (and writeback) logic.

As evidence that a writeback directory cache alone is insufficient to prevent coherence-induced
hammering, “writeback” MOESI yields significantly higher (worse) maximum ACT rates than
“write-on-allocate” MOESI-prime across the PARSEC 3.0 and SPLASH-2x workloads. On aver-
age, “writeback” MOESI increases maximum ACT rates by 159.56%, 104.71%, and 75.01% (2-,
4-, and 8-nodes). For the maximally-activated workload in each configuration, the increases are
140.47%, 100.39%, and 55.00%, respectively.

Nonetheless, because MOESI-prime only prevents redundant (unnecessary) directory writes,
a writeback directory cache’s deferral of initial (necessary) directory writes can complement
MOESI-prime’s ability to reduce worst-case ACT rates. On average, combining MOESI-prime
with a writeback directory cache decreases (improves) maximum ACT rates by 3.69%, 0.57%,
and 5.15% (2-, 4-, and 8-nodes). For the maximally-activated workload in each configuration, the
decreases are 2.50%, 14.48%, and 15.25%, respectively.

4.7.3 Considerations for Other Hammering

MOESI-prime mitigates the reliability and security threat of coher-ence-induced hammering, but
other forms of hammering remain. To our knowledge, all other existing hammering patterns [53,
59, 75, 91, 92, 98, 124, 125, 131, 147, 152, 167, 180, 218, 233, 240, 241, 250, 269, 288, 299, 300, 325]
use some combination of repeated flush instructions, set conflicts, or DMAs in order to bypass
system caches and thereby repeatedly access DRAM. While these forms of hammering need to be
mitigated, they are of a different nature than coherence-induced hammering. In particular, these
other patterns are not known to arise in commodity workloads, currently only posing a security
(not a reliability) threat. More importantly, MOESI-prime’s mitigations for coherence-induced
hammering are complementary to mitigations for other current and future hammering patterns.

As a case in point, Cojocar et al. [51] exploit a hammering phenomenon related to the spec-
ulative reads found in ccNUMA protocols (§4.3.4). In particular, they hammer using memory
directory reads caused by repeated flushes of the same invalid cache line(s). Upon receiving a
flush for an invalid cache line, the home agent may read the memory directory state to check for
remote copies (which must also be flushed). Thus, by repeating this pattern, one can hammer on

71



applicable ccNUMA platforms.
This “repeated flush” technique could be considered a malicious combination of flush-based and

coherence-induced hammering. The pattern is only known to occur in malicious code, and would
be mitigated by flush-specific Rowhammer defenses (e.g., virtualizing or throttling clflush be-
havior). In contrast, the coherence-induced hammering introduced in this paper (1) occurs in
commodity workloads and (2) does not require clflush capabilities.

4.8 Related Work

Rowhammer. Rowhammer bit flips were disclosed in 2014 on DDR3 DRAM [152] and followed
by attacks across a variety of DRAM technologies, such as DDR4, LPDDR4/5, and HBM. Prior
work [140, 141, 142] has also explored the related phenomenon of data-dependent DRAM fail-
ures. While existing attacks require carefully-crafted instruction sequences, coherence-induced
hammering is the first hammering shown to occur in commodity workloads.

DDR4 and newer DRAM includes target row refresh (TRR) as a mitigation. However, attacks
have bypassed TRR to flip bits [75, 98, 125, 233, 240, 300]. Recent work [52, 147, 261] shows
that newer DRAM is increasingly susceptible to Rowhammer, and that proposed mitigations [144,
171, 337] will incur increasing performance overhead with rising susceptibility (i.e., decreasing
MACs, §4.3). Follow-up state-of-the-art mitigations [21, 199, 236, 256, 336] are consistent with
this finding. In contrast, while MOESI-prime only prevents coherence-induced hammering, it has
negligible impact on performance, and decreases the frequency at which these MAC-dependent
defenses would be engaged for commodity workloads.

ccNUMA Systems. Scale-Out ccNUMA [78] reduces remote DRAM latencies by replicating
remote data in local DRAM. Other performance optimizations include a cache-line aware inter-
face for performance tuning ccNUMA systems [248], feedback-driven page placement [197,198],
NUMA-optimized locks [33, 64], faster barriers [47], and speculative lock elision [247]. As co-
herence/consistency must always be maintained, these optimizations could benefit from MOESI-
prime’s prevention of coherence-induced hammering in high-performance systems.

ccNUMA Coherence Protocols. State-of-the-art ccNUMA protocols are inspired by the DASH
architecture’s directory protocol [173]. AMD [174] and Improved-MOESI [6] propose an “always
migrate” ownership policy similar to MOESI-prime’s “greedy local” policy, except MOESI-prime
does not migrate ownership from the local node when possible. Other work proposes mecha-
nisms (e.g., coherence states) to optimize producer-consumer [48] and migratory [58,284] sharing.
MOESI-prime complements these techniques, preventing such sharing from hammering DRAM.

Protocol Generation. ProtoGen [234] and HieraGen [235] automatically generate correct-
by-design protocols from stable state specifications. To our knowledge, no support yet exists to
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automatically generate memory directory ccNUMA protocols.

4.9 Conclusion

In this work, I have provided novel evidence of coherence-induced hammering in commodity
workloads, the first hammering found to occur in non-malicious code. Given rising susceptibility to
Rowhammer, I have designed MOESI-prime, a ccNUMA protocol that prevents identified sources
of such hammering, retains Intel’s state-of-the-art scalability, improves average DRAM power, and
negligibly-affects average performance—even improving the performance of many workloads. As
Rowhammer susceptibility continues to rise, solutions that avoid unnecessary row activations such
as MOESI-prime will ensure continued reliability and security in the cloud.
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CHAPTER 5

Siloz: Leveraging DRAM Isolation Domains to
Prevent Inter-VM Rowhammer

5.1 Introduction

Cloud providers host virtual machines (VMs) from multiple tenants atop the same physical ma-
chine, while providing per-VM isolation across various metrics [77,251]. To provide per-VM per-
formance isolation, providers use a rich set of technologies across hardware resources (e.g., CPU
affinity [187], SR-IOV [67], and memory bandwidth allocation [118]). Although providers can
also use a growing set of methods to provide per-VM security isolation (e.g., CPU enclaves [57],
cache partitioning [155], and memory encryption [8, 117]), providers lack practical means to pro-
vide strong isolation in one of the most significant cloud server resources: DRAM.

In particular, today’s servers interleave (spread) data from multiple tenants across different
DRAM banks, ranks, and channels to maximize the memory-level parallelism afforded by these
structures [192,286]. Unfortunately, sharing these structures without careful consideration exposes
co-located VMs to security and reliability threats [237,271], including Rowhammer bit flips [152].
To combat these threats, I envision a future in which cloud providers can leverage DRAM isolation

domains that provide DRAM isolation capabilities in line with those of other hardware resources.
The goal of this work is to enable cloud providers to take the first step toward practically man-

aging DRAM as a set of isolated domains. To achieve this goal, I propose the use of DRAM
subarrays for isolation. DRAM consists of many subarrays that are natural isolation boundaries of
DRAM cells [153]: cells in one subarray cannot disturb cells in another [52]. While DRAM does
not expose subarrays today, software can easily determine subarray boundaries (§5.4.1). By using
subarrays, I show that inter-VM Rowhammer can be prevented on today’s cloud servers without
sacrificing performance.
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5.1.1 This Paper: Mitigating Inter-VM Rowhammer

Inter-VM Rowhammer is a glaring example of today’s lack of DRAM isolation; a VM’s frequent
activations (≈ accesses) of the same DRAM rows—“hammering”—can flip bits in nearby rows
used by another VM or the host. Bit flips can cause data loss [152], machine check exceptions [53],
denial-of-service [124], side channels [50, 167], and system subversion [269].

Despite deployed hardware mitigations [53, 75, 125, 160], cloud systems remain vulnerable to
inter-VM hammering. In fact, recent work [185] shows that malicious and commodity cloud work-
loads already activate rows at rates exceeding today’s Rowhammer thresholds. As these thresholds
continue to decrease with process scaling [52, 147, 261], Rowhammer poses an increasing threat
to security and reliability.

While cloud providers could use software to mitigate inter-VM hammering, state-of-the-art
defenses incur high memory/performance overhead or contain significant gaps in protection. Soft-
TRR [347] and CTA [322] do not scalably-generalize beyond page table protection, leaving other
data vulnerable. ANVIL [13] is susceptible to DMA-based Rowhammer [299]. “Guard row”
mitigations [27, 31, 161]—where a set of guard rows are reserved as protection buffers between
normal rows—require ≥ 50% extra DRAM per protected region and thus only scale to protect
small quantities of data.

Given the limitations of existing software Rowhammer mitigations—coupled with the dearth
of hardware DRAM isolation support—cloud providers lack practical means to mitigate inter-VM
Rowhammer. Thus, I introduce Siloz, a hypervisor that uses subarray group memory management
to prevent inter-VM hammering with negligible performance effect. Specifically, Siloz integrates
subarray group isolation, bank-level parallelism, and extended page table (EPT) integrity for effi-
cient protection against inter-VM hammering.

Siloz’s key insight is that subarray-based Rowhammer isolation—where prior work [52] shows
that Rowhammer is ineffective across subarray boundaries—can co-exist with bank-level paral-

lelism. Bank-level parallelism is the finest-grained access parallelism exposed by modern DRAM,
offering > 18% execution time improvement [286]. As such, Siloz enables high performance
alongside per-VM Rowhammer isolation by partitioning DRAM into fine-grained subarray groups

of ≈ 1.5 GB each (depending on memory geometry), formed from a subarray per each of a socket’s
banks. Thus, a VM using one or more subarray groups can allocate memory across every bank,
yet isolated to specific subarrays.

To conveniently manage subarray groups, Siloz builds on existing non-uniform memory ac-
cess (NUMA) support. Siloz abstracts subarray groups as logical NUMA nodes, enabling robust
memory management, while maintaining compatibility with physical NUMA performance opti-
mizations (e.g., Siloz can use same-socket subarray groups for lower latency).

Notably, Siloz’s ability to enforce subarray group isolation relies on EPT integrity; because
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EPTs uniquely define the host physical addresses that VMs can access, a malicious VM could
induce bit flips in even its own EPTs to access another domain [269]. While emerging Intel and
AMD hardware offer support for EPT integrity checks [8,117], Siloz can also protect against EPT
bit flips on legacy systems. Namely, Siloz exploits the insight that all EPTs can fit in < 0.001%

of DRAM rows are thus amenable to supplemental guard row protection without significant cost.
By novelly accounting for server DRAM addressing alongside prior guard row techniques [27,31,
161], Siloz limits DRAM overheads for EPT protection to just 32 8 KB rows per bank (≈ 0.024%

of a 1 GB bank).
I evaluate Siloz’s Linux/KVM [157] implementation on Intel Skylake servers based on a major

cloud provider’s configuration, demonstrating that Siloz prevents inter-VM hammering and EPT
bit flips. I find that Siloz’s combination of subarray group isolation and EPT protection has negli-
gible effect on average performance (within ±0.5% of baseline Linux/KVM) across various cloud
workloads [36, 55, 133, 162, 230], SPEC CPU 2017 [32], and PARSEC 3.0 [23, 344].

In summary, I make the following contributions:

• I present Siloz, a hypervisor that uses subarray groups to bring per-VM, in-DRAM isolation
to the cloud, while preserving bank-level parallelism for high performance.

• To maintain isolation on hardware without emerging EPT integrity checks, Siloz places EPTs
in designated guard-protected rows, using knowledge of DRAM addressing to securely limit re-
served DRAM to ≈ 0.024% of each bank.

• I show that Siloz offers cloud providers the first practical and comprehensive mitigation
for inter-VM hammering, providing complete protection with negligible effect on average per-
formance (within ±0.5% of baseline Linux/KVM).

Siloz’s Linux/KVM implementation is open-source [182].

5.2 Background

In this section, I present background on server systems, DRAM, and Rowhammer as needed to
understand Siloz.

5.2.1 Hypervisor Memory Management

State-of-the-art hypervisors like Linux/KVM [157] use hardware virtualization extensions (e.g.,
Intel VT-x [295] or AMD-V [136]) to map host memory to a VM’s address space. The VM can
then access the vast majority of its memory without performance-costly traps (VM exits) into the
hypervisor.
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The key difference between OS-level and hypervisor-level memory management is the extra
layer of memory address translations included in hypervisor-provisioned mappings. For a standard
process, the OS sets up multi-level page tables to translate between two types of addresses: virtual
and physical. Hypervisors instead consider three types of addresses for a VM: (1) guest virtual
addresses (GVAs, equivalent to standard virtual addresses), (2) guest physical addresses (GPAs,
the VM’s illusion of physical addresses), and (3) host physical addresses (HPAs, equivalent to
standard physical addresses).

The guest OS uses multi-level page tables to translate GVAs to GPAs. Per convention on modern
64-bit systems, page tables are four levels for 4 KB pages, three levels for 2 MB pages, and two
levels for 1 GB pages. Each level of the page table is itself implemented on a 4 KB page that holds
512 64-bit entries, each of which points to the next level of the table (or the final physical page)
for a given mapping.

The hypervisor (i.e., host OS) uses similar, multi-level extended page tables (EPTs) to translate
GPAs to HPAs. Guests cannot directly access EPTs, but guest behavior may indirectly cause
accesses (e.g., hardware EPT walks).

5.2.2 Non-Uniform Memory Access (NUMA)

Cloud providers deploy large quantities of compute and memory per server for cost effectiveness
and ease of management. To scale performance amidst large resource quantities, servers are often
architected as non-uniform memory access (NUMA). A NUMA node conventionally refers to a
combination of cores (e.g., a socket) and a local (near) memory pool that is faster to access than
remote (far) memory; technically, a node may consist of only cores, only memory, or both.

The NUMA topology (i.e., the map of per-node resources) is typically reported to system soft-
ware by server firmware [294]. System software uses the topology to improve performance via
NUMA-aware resource management. For example, software may allocate memory from a core’s
local pool.

NUMA’s key benefits are its abilities to decrease latencies for workloads using local memory
and to reduce interference (e.g., memory traffic) among independent tasks on different nodes. Ad-
ditionally, kernel NUMA support offers convenient abstractions to manage compute and/or mem-
ory resources.

5.2.3 Server DRAM (Micro)architecture

A server DRAM module is a hierarchically-organized set of DRAM cells, each of which encodes
a single bit of information via high/low charge. Each module is typically attached to one of a set
of CPU sockets, with the socket and its modules forming a conventional NUMA node (§5.2.2).
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Because DRAM cell charges diminish over time, memory controllers and DRAM modules
cooperate to periodically refresh the charges for data retention. In widely-deployed DDR4 [126]
DRAM, cells are refreshed within 64 milliseconds.

As shown in Fig. 5.1, the DRAM module hierarchy is a set of ranks, each encompassing banks,
each encompassing subarrays, which are each a row-column grid of cells. The DDR4 standard
specifies that a rank holds up to 16 banks, and a row holds up to 8 KB of cells. Internal to server
DRAM modules, each of a subarray’s 8 KB rows is split into two half-rows across a rank’s “A” and
“B” sides, with each half-row simultaneously serving half of a given data request [51]. While a
row’s external representation (i.e., a single 8 KB structure) is sufficient to understand the majority
of Siloz’s design, I discuss the relevance of internal half-rows in §5.6.

Although many other (micro)architectural details are vendor-specific, a common server DRAM
module is a dual-rank, 32 GB DIMM (dual in-line memory module). Given 32 GB split across 2
ranks and 16 banks/rank, a bank is 1 GB. Each bank is further divided among a vendor-specific
number of subarrays [43,52,153,189,308], typically each consisting of 512–2048 rows [308]. For
example, a commodity subarray size of 1024 8 KB rows [44, 145, 146, 153, 170] (as is the case for
Siloz’s evaluation server) yields 128 subarrays per 1 GB bank.

5.2.4 Accessing Data in DRAM

To read/write data in DRAM, a memory controller first translates the data’s host physical address
to a media address that identifies specific DRAM cells. The parallel in the CPU realm is a virtual-
to-physical address mapping, which system software typically controls at page-sized granularity
(§5.2.1). However, unlike software-defined virtual-to-physical mappings, physical-to-media map-
pings are fixed at boot via BIOS settings [103, 119] and applied at cache line granularity.

Given the data’s media address, the controller first issues an activate (ACT) to the row con-
taining the data. This command connects the row to its encompassing bank’s row buffer, which
can only be occupied by one row per bank at a time. The controller then issues a read or write
command to an offset within the row buffer, completing the data access.

While accesses to a single bank are serialized, different banks can be accessed in parallel. Thus,
commodity physical-to-media address mappings maximize throughput by interleaving (spreading)
sequential cache lines across a conventional NUMA node’s (e.g., socket’s) banks, achieving bank-

level parallelism for common access patterns [183, 286, 345].

5.2.5 Rowhammer

Rowhammer [152] is a silicon-level effect in DRAM where frequent ACTs (§5.2.4) of the same
aggressor rows can flip bits in nearby victim rows due to electromagnetic interference. Specif-
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Figure 5.1: A simplified DRAM module hierarchy (§5.2.3) in the context of a DRAM row activa-
tion (§5.2.4) and Rowhammer (§5.2.5). A frequently-activated (“hammering”) aggressor row may
flip bits in victim rows in the same subarray.

ically, an ACT yields the side effects of (a) refreshing the charges in the activated row, but (b)
potentially disturbing charges in nearby rows. When aggressor rows are activated at rates exceed-
ing a Rowhammer threshold (varying across DIMMs), cumulative disturbance effects may flip bits
in victim rows that have not been recently-refreshed/activated. As shown in Fig. 5.1, rows in the
same subarray (§5.2.3) as the aggressor row(s) are potential victims, while rows in different sub-
arrays are unaffected due to electric isolation (i.e., exclusive circuitry) [43, 52, 183, 330]; broadly,
subarrays provide isolation boundaries for ACT-induced DRAM disturbance effects, including
RowPress [190]. I limit discussion to Rowhammer for simplicity.

Rowhammer bit flips can cause data loss [152], machine check exceptions [53], denial-of-
service [124], side channels [50,167], and system subversion [269]. Recent work [185] shows that
malicious and commodity workloads can yield ACT rates surpassing modern Rowhammer thresh-
olds; other work [52,147,261] shows that thresholds are decreasing with process node scaling (i.e.,
susceptibility is increasing).

To mitigate Rowhammer, modern servers rely on error correction codes (ECC [19]) and tar-
get row refresh (TRR [75], an in-DRAM mitigation that refreshes a subset of victim rows ahead
of schedule). While these mitigations have thus far proved effective for commodity workloads,
carefully-crafted malicious workloads can still induce uncorrected bit flips despite ECC [53] and
TRR [59, 75, 125, 160]. Furthermore, even corrected bit flips are a security concern, as they form
a timing side channel that can leak a row’s bit values to attackers with access to additional rows in
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the same subarray [167].
Given the gaps in hardware mitigations and the goal of per-VM isolation, cloud providers can

use software to supplementally mitigate inter-VM hammering, where one VM’s hammering can
flip bits in another VM or the host.

5.3 Limitations of Existing Software Defenses

In this section, I motivate the need for Siloz’s prevention of inter-VM hammering by explain-
ing how existing software mitigations fail to mitigate such hammering without significant perfor-
mance/memory overheads, if at all. Broadly-speaking, existing software Rowhammer mitigations
adopt one of three approaches: selectively-protecting data, detecting attacks in progress, or insert-
ing guard row barriers.

Mitigation via Selective Data Protection. The first class of software mitigations opts to only
protect a subset of data as a security-performance trade-off [322,347]. For instance, SoftTRR [347]
periodically sets reserved bits in page table entries for neighbors of potential victim rows. Thus,
accesses to the neighbors (potential aggressor rows) will trap into system software, which can
refresh the victim rows before the aggressors surpass the Rowhammer threshold.

The key limitation of these defenses is that they only protect a small portion of a VM’s data
(e.g., page tables) for acceptable performance overheads. As I will show, Siloz protects all of a
VM’s data against another VM’s hammering.

Mitigation via Attack Detection. The second class of software mitigations aims to detect
Rowhammer against any data in the system and correspondingly stop the attack (e.g., by rate-
limiting aggressor row activations or refreshing victim rows) [13,41,63]. For instance, ANVIL [13]
uses performance counters to detect anomalies (e.g., frequent cache misses) that are potentially-
indicative of a Rowhammer attack.

The key limitation of these approaches is that they can incur both performance-costly false
positives and security-costly false negatives. For example, ANVIL must engage defenses at
(increasingly-low) conservative thresholds, risks not detecting attacks/engaging defenses until after
bits have flipped, and does not detect DMA-based Rowhammer [299]. In contrast, Siloz’s subar-
ray groups do not track hammering, but rather isolate each VM from the hammering of another;
correspondingly, Siloz is agnostic to both the Rowhammer threshold and the form of hammering
used to flip bits.

Mitigation via Guard Rows. Several proposed software Rowhammer mitigations [27, 31,
161] place guard rows between isolation domains (e.g., user-kernel or different processes). These
mitigations exploit the fact that Rowhammer only affects data in nearby rows (§5.2.5), reserving
guard rows as protection barriers between “normal” rows. If hammering occurs in the normal rows,
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it can only flip bits in guard rows, which are unused or contain supplementally-protected data.
The key limitation of these mitigations is that they inherently waste DRAM; the guard rows

cannot be used as normal rows. While I will show (§5.5.4) that these DRAM overheads can be
acceptable when protecting small quantities of isolation-enforcing data against bit flips, protecting
arbitrary data incurs impractical overheads (i.e., ≥ 50% extra DRAM per protected region [161],
where DRAM is the dominant hardware cost in many cloud environments [313]).

Furthermore, because guard rows still share circuitry with normal rows, increasing Rowhammer
susceptibility requires increasing quantities of guard rows for mitigation. For instance, ZebRAM’s
[161] 50% DRAM overhead at 1 guard row per normal row rises to 80% at a modern requirement
of 4 guard rows per normal row on server DIMMs [52, 261].

Finally, in addition to wasting DRAM, existing guard row mitigations do not account for stan-
dardized [126] and vendor-specific [52] server DRAM address mappings that affect row proximity
(and hence, which rows must serve as guard rows).

As I will show (§5.6), Siloz use of subarray groups to prevent inter-VM hammering (a) allows
≈ 98.5%–100% of DRAM to be used as normal rows, depending on server features and subarray
size (b) offers fundamental, silicon-level Rowhammer isolation, and (c) accounts for server DRAM
addressing in both normal rows and any potential guard rows.

Key Takeaways. Existing software mitigations fail to provide efficient and effective mitigation
of inter-VM hammering to cloud providers. As I will show in contrast, Siloz’s subarray group iso-
lation comprehensively protects each domain against inter-VM hammering at negligible overhead.

5.4 Subarray Group Primitive

In this section, I introduce the subarray group that Siloz uses as a memory management primitive.
Recall that each DRAM bank is composed of a set of row-column subarrays, where Rowhammer is
ineffective across subarray boundaries (§5.2.5). Accordingly, the key motivation behind subarray
groups is that different VMs occupying disjoint subarray(s) cannot directly hammer each other. I
first describe the structure of subarray groups in DRAM (§5.4.1) before detailing how system-level
pages map to subarray groups (§5.4.2).

5.4.1 Subarray Groups in DRAM

While each individual subarray offers a unit of Rowhammer isolation, Siloz opts to provide iso-
lation via subarray groups, defining subarray group s as a collection of the sth subarray from
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Figure 5.2: Subarray groups in a DRAM hierarchy (§5.4.1). Ascending physical pages are mapped
to ascending row groups—and by extension, subarray groups—in a physical node (§5.4.2). For
simplicity, I depict 2 rows per subarray, 1 page per row group, and a monotonically-ascending
mapping.

each bank in a physical1 NUMA node (e.g., socket). As motivation behind Siloz’s use of subar-
ray groups, I consider the challenges of isolation to a single subarray. In particular, allocating a
page of memory on a single subarray on modern servers is not practical—if even feasible—due to
(a) physical-to-media address mappings that interleave individual pages across a physical node’s
banks to achieve bank-level parallelism (§5.2.4), and (b) the performance impact of eliminating
such parallelism (e.g., > 18% for some workloads [286]), if such an option is supported in BIOS/-
firmware.

Overcoming these challenges, Siloz’ subarray groups’ composition from 1 subarray per bank
in a physical node maintains high throughput and is compatible with physical-to-media address
mappings. As depicted in Fig. 5.2, for a subarray size of r rows, subarray group 0 is comprised
of rows [0, r) in each of a physical node’s banks (i.e., row groups [0, r)), subarray group 1 of row
groups [r, 2r), and so on. While I have not observed heterogeneously-sized subarrays in Siloz’s
evaluation platform, subarray group composition can be trivially-adjusted to account for proposed
heterogeneity [43, 170, 280, 308] and heterogeneity observed in other DRAM modules [221].

A subarray group’s size is thus the product of a server’s number of banks per physical node,
rows per subarray, and row size. Of these factors, banks per physical node and row size are
already reported to system software. While microarchitectural subarray sizes are not reported
in the DDR4 standard [126], I have confirmed with a major cloud provider that DRAM vendors
can share subarray sizes with them.

Even without the cooperation of DRAM vendors, one can infer a module’s subarray sizes using
prior methodologies [52, 329]. I apply the mFIT [52] methodology—which uses a regular pattern

1We refer to conventional NUMA nodes (§5.2.2) as physical nodes to distinguish them from Siloz’s logical nodes
(§5.5.2).
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Banks/Physical Node Rows/Subarray Row Size SG Size
192 1024 8 KB 1.5 GB

Table 5.1: Subarray group (SG) size is the product of banks per physical node, rows per subarray,
and row size; SG size derivation for Siloz’s evaluation server is pictured.

of failed Rowhammer attacks to deduce subarray size—to Siloz’s evaluation server and observe
failed Rowhammer attacks every 1024 rows. Thus, I infer a subarray size of 1024 rows, consistent
with sizing used in prior work [44, 145, 146, 153, 170].

Given the server’s 192 banks/physical node and 8 KB/row, the 1024-row subarray size yields a
subarray group size of 1.5 GB, as shown in Table 5.1 (192 banks/physical node ∗ 1024 rows/sub-
array ∗ 8 KB/row). For subarray sizes in the modern range of 512–2048 rows [308], the subarray
group size would linearly-increase from 0.75 GB to 3 GB. I compare the effects of managing
different subarray group sizes in §5.7.4.

5.4.2 Mapping Pages to Subarray Groups

Subarray group isolation can only work if entire pages map to the same subarray group(s). This
is because hypervisors—including Siloz—provision memory to VMs at the granularity of pages
(§5.2.1), meaning that a VM is only isolated if its pages reside in the same exclusive subarray
group(s).

We therefore detail how commodity physical-to-media addressing maps all 2 MB and 4 KB
pages to a single subarray group, enabling isolation. I then discuss isolation of 1 GB pages, which
poses an additional challenge.

2 MB and 4 KB Pages. Given 2 MB alignment in commodity subarray group sizes (with han-
dling of exceptional cases discussed in §5.6), I exploit the insight that 2 MB and 4 KB pages map
to a single subarray group on servers that adopt a generally-ascending physical-to-media address
mapping. For instance, to a first approximation of Intel’s Skylake-based server mappings, row
groups (§5.4.1) are populated in ascending order by ascending page numbers, shown in Fig. 5.2.
Assuming one page per row group for visualization, page 0 maps to row group 0, page 1 to row
group 1, and so on.

Considering the finer details of Intel’s mapping, increasing page numbers do not monotonically-
ascend through all row groups, but still result in a layout where 2 MB and 4 KB pages map to the
same subarray group (maintaining subarray group isolation capabilities). Specifically, every n rows
groups are populated in alternating ascending fashion by two individually-contiguous physical
address ranges A and B, where n = 16 based on the memory geometry of Siloz’s evaluation
server (and 16 row groups is 24 MB of memory: 8 KB/row ∗ 16 rows/bank ∗ 192 banks/socket).
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Row groups [0, n) are populated by the first chunk of range A, row groups [n, 2n) by the first chunk
of range B, row groups [2n, 3n) by the second chunk of range A, and so on—until repeating with
new ranges at a second, 768 MB-aligned mapping “jump”. Crucially, because these chunks align
with and encompass entire 2 MB pages, subarray group isolation remains possible.

1 GB Pages. The aforementioned address “jump” at 768 MB-aligned addresses means that 1
GB (1024 MB) pages do not inherently map to a single subarray group. However, by constructing
sets of consecutive subarray groups totaling 3 GB in size (e.g., 2 sets of 1024-row subarray groups,
each 1.5 GB), I find that 1/3 of 1 GB physical address ranges occupy the same set of subarray
groups, enabling isolation of associated pages. The remaining 2/3 of memory can be allocated as
2 MB or smaller pages to preserve isolation.

5.5 Siloz Hypervisor Design

In this section, I present the design of a hypervisor, Siloz, built to provide efficient inter-VM
Rowhammer protection by placing VMs in private subarray group(s). We first detail Siloz’s policy
for inter-VM isolation via subarray groups (§5.5.1) and how Siloz introduces logical NUMA nodes
to manage this policy (§5.5.2). I then describe a subarray group’s lifetime from host boot to
shutdown (§5.5.3). Finally, I discuss integrity protection for the extended page tables (EPTs) that
Siloz uses to enforce subarray group isolation (§5.5.4).

For convenient concrete examples, I discuss Siloz and its subarray groups in the context of
a Linux/KVM baseline hypervisor, Siloz’s evaluation server—a dual-socket, 192 DRAM banks/-
socket (i.e., physical node), major cloud provider-based Intel Skylake configuration—-and a com-
modity subarray size of 1024 rows [44, 145, 146, 153, 170] (as found on Siloz’s evaluation server,
resulting in a subarray group size of 1.5 GB, §5.4). However, Siloz’s design principles generalize
to other hypervisors, memory geometries, subarray sizes, and—given similar physical-to-media
address mappings—CPU vendors.

5.5.1 Subarray Group Isolation: Goal and Policy

Siloz’s goal is to isolate each VM and the host from inter-VM hammering. Accordingly, Siloz
places each VM and the host into private subarray groups, such that the effects of hammering are
restricted to one’s own domain. Siloz correspondingly classifies each subarray group as either
host-reserved (usable by the host) or guest-reserved (usable by exactly one VM).

Siloz decides whether to allocate a page from a particular host- or guest-reserved subarray
group based on the page’s mediated or unmediated classification as henceforth defined. If a VM
can directly access the page (e.g., without a VM exit), the page is unmediated and should be
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Figure 5.3: Siloz prevents inter-VM hammering by placing specific pages in host- or guest-reserved
subarray groups, based on whether a VM has unmediated access to the pages (§5.5.1). Siloz
abstracts subarray groups as logical NUMA nodes (§5.5.2) for convenient memory management
throughout system lifetime (§5.5.3). Because extended page tables (EPTs) enforce subarray group
isolation, Siloz supplementally ensures EPT integrity using emerging hardware extensions [8,117]
or guard rows (§5.5.4).

allocated from one of the VM’s subarray groups; otherwise, the page is mediated and should be
allocated from a host-reserved subarray group.

Intuitively, unmediated pages include those mapped into the VM’s address space that will not
cause a VM exit for some access type (e.g., guest RAM, guest ROM due to unmediated reads,
and select MMIO pages). More specifically, Siloz classifies pages based on their existing QEMU
memory type [62], indicating which access types trigger exits, if any.

The rationale behind Siloz’s policy is that a VM can trivially-hammer memory to which it has
unmediated access, and that memory should therefore be contained to the VM’s subarray group(s)
to maintain isolation. Conversely, theoretical “confused deputy” hammering (i.e., maliciously-
exiting into the hypervisor in a manner that tricks the host into hammering on behalf of the VM)
is a comparatively-difficult—and undemonstrated—attack vector. Thus, host-mediated pages are
already relatively-guarded against use for Rowhammer. More importantly, should such confused
deputy hammering ever prove feasible, the required VM exit means that the host could easily apply
its own mitigation for this hammering (e.g., rate-limiting exit-induced memory accesses).

For clarity, I defer discussing Siloz’s handling of EPT pages—which are uniquely both (a) not
mapped into the guest’s address space but (b) still indirectly-accessible to the guest via unmediated
hardware EPT walks (§5.2.1)—to §5.5.4.

5.5.2 Subarray Groups as Logical NUMA Nodes

To conveniently manage subarray group isolation, Siloz introduces the concept of logical NUMA
nodes, where a logical NUMA node consists of at least one subarray group. Siloz thus builds on
robust and mature kernel support for physical nodes (e.g., sockets, §5.2.2) to manage subarray
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groups.
While logical nodes are managed via similar NUMA primitives, they are distinct from physi-

cal nodes; when two logical nodes contain DRAM from the same socket—namely, two different
subarray groups—they do not exhibit remote NUMA latencies between each other. Siloz nonethe-
less preserves physical NUMA optimizations via a mapping from each logical node to its physical
node. For instance, when possible, a VM is constructed from subarray groups (logical nodes)
co-located on same socket (physical node) for lower latency.

Logical nodes corresponding to guest-reserved subarray groups are classified as guest-reserved
nodes. Guest-reserved nodes comprise all but one logical node per socket and are memory-only

(i.e., no directly-associated compute resources, §5.2.2). This design, coupled with a Linux control

group [68] that limits memory allocations to specific nodes [138], prevents Siloz from using guest-
reserved nodes unless requested by a KVM-privileged process (§5.5.3). Such memory-only nodes
are similar to the concept of zNUMA nodes [176].

The remaining logical nodes correspond to host-reserved subarray groups and are hence classi-
fied as host-reserved nodes. Unlike guest-reserved nodes, host-reserved nodes are associated with
both subarray group(s) and their corresponding socket’s cores. Again coupled with a Linux control
group, this design restricts Siloz to host-reserved nodes by default for both memory allocations and
scheduling decisions.

5.5.3 Lifetime of a Subarray Group

Siloz calculates which physical pages map to which subarray groups during early boot, enabling
isolation from boot until shutdown. The number of rows per subarray is passed as a boot parameter.
To determine the physical-to-media address mapping (required to map physical addresses to sub-
array groups), Siloz uses its ports of existing drivers [102, 119] for such translations, modified to
operate during early boot. Because physical-to-media mappings are fixed based on BIOS settings
(§5.2.4), the calculated subarray group address ranges can be cached across boots in a bootloader
or firmware.

Once the subarray group address ranges are loaded, Siloz augments existing NUMA topology
parsing logic (§5.2.2) to (a) provision a logical node for each subarray group, and (b) store a
mapping from the logical node to its corresponding physical node to preserve physical NUMA
semantics (§5.5.2).

After the required nodes are in place and boot is complete, a privileged user can create a control
group with exclusive access to available guest-reserved nodes. A QEMU [20] process, which
manages a KVM VM, can then allocate memory on the guest-reserved nodes if the process (a)
belongs to the control group, and (b) has KVM privileges. To request this memory, QEMU uses a
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new UNMEDIATED flag in its mmap() calls for unmediated memory ranges; recall that mediation
status is provided by existing QEMU memory types (§5.5.1). Upon parsing the flag, Siloz checks
whether the requesting process is permitted to access guest-reserved nodes, and if so, allocates the
memory from the appropriate nodes.

During VM execution, Siloz avoids potential overheads of managing a large number of nodes
by identifying scenarios in which it is unnecessary to iterate over guest-reserved nodes, especially
while holding locks. For instance, a guest-reserved node’s free memory statistics do not change
after VM boot and thus do not require periodic updates [285].

When a VM is shutdown/killed, its backing host memory is freed to the corresponding (logical)
nodes’ free pools per existing Linux semantics. However, the nodes’ reservation remains valid
until its encompassing control group is destroyed/modified by a privileged user. I note that there is
no modification to host shutdown: the privileged shutdown routine is free to kill any process and
its resources, ignoring otherwise active subarray group/logical NUMA constraints.

5.5.4 Extended Page Table (EPT) Integrity

EPTs pose a unique challenge to subarray group isolation. Because EPTs define the host physical
addresses that a VM may access (§5.2.1), Siloz relies on EPT integrity to enforce subarray group
isolation. Thus, unlike other VM data, Siloz’s goal of per-VM Rowhammer isolation requires
protection of a VM’s own EPTs, not just inter-VM isolation; EPT bit flips must be prevented or
detected-upon-use (integrity-checked).

Hardware-Based Protection. Emerging Intel and AMD servers support secure EPT [117],
referred to as secure nested paging (SNP) by AMD [8]. With secure EPT, hardware automatically
performs mapping integrity checks for EPT entries denoted as “secure”, providing a convenient
mechanism to supplement Siloz’s subarray group isolation. While integrity checks only detect—
not prevent—EPT corruption, they eliminate the key security threat of EPT bit flips: software
cannot use a corrupted EPT to escape subarray group isolation.

Software-Based Protection. Because secure EPT is only beginning to emerge, an alternate
solution is needed for legacy hardware. Here, Siloz exploits the insight that EPTs across all VMs
account for a very small fraction of DRAM (i.e., < 0.001% in deployment conditions described
shortly), lending themselves to protection via guard rows (§5.3).

A strawperson solution would reserve an entire subarray group for EPTs, placing n guard rows
between each EPT row. Given 1024-row subarrays, EPTs and guard rows would jointly-occupy
≈ 0.78% of DRAM. However, via insights about server DRAM addressing and VM deployment,
Siloz can significantly reduce even this small DRAM overhead.

In particular, all EPTs can fit into a single row group per socket on Siloz’s major cloud provider-
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based server configuration due to several deployment conditions. First, because cloud providers
do not typically share pages among VMs for security [176, 282, 305], the number of EPTs is
bounded; each host page is mapped in at most one EPT. Second, allocating VMs in contiguous
physical memory regions—made feasible by (a) each subarray group’s contiguity, and (b) static
guest memory allocation done for performance [176, 282, 305]—further reduces the number of
EPTs; each last-level EPT can map 512 of the VM’s contiguous pages (§5.2.1). Third, backing
guests with 2 MB huge pages—again for performance [176, 282, 305]—reduces EPTs by a factor
of 512 (§5.2.1).

In this environment (deployed by multiple major cloud providers [176, 282, 305]), the 512 en-
tries in each last-level EPT page cumulatively map approximately 1 GB of DRAM, with higher-
level EPT pages providing a negligible (≈ 1/512) increase in the total number of EPT pages. Since
each bank is 1 GB, and a single 8 KB row in a bank holds two EPT pages, one row group per socket
is sufficient to store all EPTs.

Thus, rather than allocating an entire subarray group for EPTs, Siloz reserves a contiguous
block of b row groups in a designated subarray group. One row group at offset o in the block
serves as the EPT row group, while the other b − 1 row groups serve as guard rows (roughly split
above and below the EPT row group). The host or a VM can accordingly safely use remaining
(non-reserved) rows in the subarray group.

In our implementation, Siloz specifically uses b = 32 and o = 12, which reserves just ≈ 0.024%

of DRAM for the combination of EPTs and guard rows. At a high level, the specific choices of
b = 32 and o = 12 ensure that an EPT row has a sufficient number on guard rows on both sides to
prevent bit flips, in spite of potential DIMM-internal half-row (§4.2.1) remaps affecting adjacency
within 32-aligned blocks. I defer more detailed discussion of such remaps to §5.6.

To allocate EPTs from appropriate row groups, Siloz instruments the host KVM module’s kmal-
loc() calls for EPT pages with a new GFP EPT flag (get free page EPT). Siloz uses this flag in con-
junction with the corresponding VM’s control group to choose a row group block (implemented,
like a subarray group, as a logical NUMA node) for the allocation.

To prevent guard rows from being used, Siloz offlines pages mapping to the guard rows during
system initialization. I note that this behavior is simply an extension of Linux’s existing capability
to offline faulty memory pages [37].

5.6 Handling Media-to-Internal Mappings

Thus far, I have discussed DRAM row addressing (and by extension, subarray group isolation)
in the context of the media addresses with which memory controllers access DRAM (§5.2.4).
However, for completeness, it is important to consider potential differences in a server DIMM’s
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internal mapping of these media addresses, such that rows are indeed isolated to the expected
subarrays. Thus, unlike prior software mitigations [13,27,31,63,161,299,322,347], Siloz accounts
for various sources of potential row remaps in server DIMMs.

Row Repairs. DRAM vendors and cloud vendors can “repair” defective rows by remapping
them to spare internal rows that are allocated during manufacturing [9, 49, 107, 108, 127, 129, 148,
148]. Notably, a row’s remapped internal address is left up to the DRAM vendor and not exposed to
the memory controller, which continues to use the same media address. Such repairs pose a threat
to subarray group isolation if they are inter-subarray, wherein a defective row could be remapped
to a spare row in a different subarray group [137].

While our experimental results (§5.7.1) have not yielded evidence of inter-subarray row repairs
(e.g., many/all defective rows may be repaired using intra-subarray spare rows), Siloz can still mit-
igate the threat of inter-subarray row repairs. In the worst-case that a DIMM implementation only
uses inter-subarray methods for its repairs, the pages mapping to these rows can simply be removed
from the system’s memory allocation pool to preserve isolation, as can already be done for failing
memory [37]. I note that only a small portion of rows (e.g., 0.15% [52]) have been experimentally-
observed to be remapped due to row repairs in server DIMMs, meaning little memory capacity
would be lost with such a mitigation.

Vendor-Specific Address Scrambling. A subset of major DRAM vendors perform row address

scrambling [52], transforming bits b1 and b2 of the row media address (where b0 is the least signif-
icant bit) by XOR-ing each with b3. While row scrambling can thus affect the internal ordering of
a group of 8 rows (bit range [b0, b2] encodes 8 rows, where b1 and b2 are potentially transformed),
it does not affect the internal contiguity of these 8 rows; higher-order bits are unchanged.

Thus, for any DIMM whose subarray size is a multiple of 8 rows, there is no impact. In any
remaining DIMMs, Siloz can remove pages mapping to the 8 row range potentially violating iso-
lation at each subarray boundary from allocatable memory (similar to any inter-subarray repaired
rows). For non-multiple-of-8 subarray sizes in the range (512, 2048), this would impact between
≈ 1.56% and ≈ 0.39% of DRAM, respectively (linearly-decreasing with larger subarray sizes).

Standardized Address Mirroring and Inversion. DDR4 specifies [128] two other forms of
row address transformations for a specific subset of signals: mirroring and inversion. Because both
have similar ramifications for Siloz, I first describe each transformation as depicted in Table 5.2,
before detailing how Siloz accounts for them. Again given a modern subarray size of 512–2048
rows [308], I consider transformations of row address bits in the range [b0, b10] (encoding up to
2048 rows). Notably, transformations of [b0, b10] and higher-order bits are mutually-independent
in DDR4 [128].

Address mirroring works as follows: for a multi-rank DIMM, select pairs of address bits are
mirrored (swapped) in odd ranks (red+orange columns in Table 5.2), while unmodified in even
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Bit Even Rank Odd Rank
A-side B-side A-side B-side

b0 b0 b0 b0 b0
b1 b1 b1 b1 b1
b2 b2 b2 b2 b2
b3 b3 ! b3 b4 ! b4
b4 b4 ! b4 b3 ! b3
b5 b5 ! b5 b6 ! b6
b6 b6 ! b6 b5 ! b5
b7 b7 ! b7 b8 ! b8
b8 b8 ! b8 b7 ! b7
b9 b9 ! b9 b9 ! b9
b10 b10 b10 b10 b10

Table 5.2: DDR4 address mirroring and inversion [128] of lower-order row media address bits as a
function of DIMM rank and “side” (half). Odd-rank addresses are mirrored (red+orange). B-side
addresses are inverted (yellow+orange). Lightened colors denote transformed bits. “!” denotes
boolean NOT.

ranks (white+yellow). Specifically, bit pairs ¡b3, b4¿, ¡b5, b6¿, and ¡b7, b8¿ are each mirrored on odd
ranks (e.g., 0b10000—b4 = 1, b3 = 0—becomes 0b01000).

To understand address inversion, recall that each row is internally-split into two half-rows: the
A-side and B-side half-rows (§4.2.1). Bits [b3, b9] are inverted in B-side half-rows (yellow+orange),
but not in A-side half-rows (white+red).

As with row address scrambling, inversion and mirroring pose a challenge to subarray group
isolation only for certain subarray sizes. In particular, if the subarray size is a power-of-2 in the
commodity range of 512–2048 rows, inversion and mirroring have no effect on subarray group
isolation; for instance, the major vendor’s DIMMs in Siloz’s evaluation server are unaffected,
given their 1024-row subarrays (§5.4).

For intuition on why power-of-2 sizes work so well, note that the n least-significant bits of a
row media address encode the exact number of rows in a subarray of size 2n. Given sizes of 512
(n = 9, [b0, b8]), 1024 (n = 10, [b0, b9]), and 2048 rows (n = 11, [b0, b10]), it is clear from Table 5.2
that these subarray size-aligned bit ranges are only transformed to different offsets within the same
subarray, maintaining isolation.

For remaining potential subarray sizes in the commodity range—where inversion and mirroring
can cause pages to be split across subarray boundaries—Siloz can still provide subarray group
isolation by forming “artificial” subarray groups. In particular, Siloz can round the subarray size
up to the nearest power-of-2, such that the rows in an artificial subarray group maintain the DIMM-
internal contiguity property.

Because these artificial boundaries would not always align with true subarray boundaries that
provide natural isolation, Siloz can instead enforce isolation across artificial bounds by adding n

guard rows at the start of each artificial subarray, where n = 4 protects against bit flips observed
on modern server DIMMs [52, 261]. Accounting for mappings on different ranks and sides, this
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Parameter Value
Host Machine Dual-socket Intel Xeon Gold 6230 CPU @ 2.1 GHz; per-socket: 40 logical cores, 192 GB DDR4 DRAM (32 GB 2Rx4

DIMMs @ 2933 MHz, 192 total banks, 1024 8 KB rows per subarray)
Host OS+Kernel Ubuntu 22.04+Linux/KVM 5.15 (generic configuration)
Guest OS+Kernel Ubuntu 22.04+Linux 5.15 (generic configuration)

Table 5.3: Baseline system configuration. The host kernel is varied among the unmodified Lin-
ux/KVM baseline and Siloz.

would reserve between ≈ 1.56% and ≈ 0.39% of DRAM (again linearly-decreasing with larger
subarray sizes). I note that this reservation would be in place of any potential reservations for
address scrambling, since the artificial subarray size would be a multiple of 8.

Key Takeaways. While commodity power-of-2 subarray sizes integrate most easily, Siloz can
support other potential subarray sizes by removing the small fraction of pages violating isolation
from allocatable memory. Nonetheless, the aforementioned challenges highlight the benefit of
hardware-software co-design in memory systems [153,217], especially for optimal subarray group
isolation. For instance, many limitations of the current DRAM hardware-software interface could
be overcome by DRAM vendors directly exposing isolation domains such as subarray groups,
providing architectural guarantees that would facilitate Siloz’s widespread adoption.

5.7 Evaluation

We evaluate Siloz against a Linux/KVM [157] 5.15 (Ubuntu 22.04 LTS) baseline hypervisor on a
major cloud provider-based Intel Skylake server configuration. Unless noted, I use default BIOS
settings. Given 192 banks per socket (i.e., physical node) and 1024 8 KB rows per subarray, Siloz
manages a subarray group size of 192 ∗ 1024 ∗ 8 KB = 1.5 GB by default. I evaluate the effects
of instead managing subarray sizes of 512 and 2048 rows (the lower and upper limits of modern
subarray sizes [308]) in §5.7.4 and distinguish these variants as Siloz-512, Siloz-1024 (default),
and Siloz-2048.

We use the same generic kernel configuration and boot parameters for the baseline and Siloz.
Our system configuration is listed in Table 5.3.

To evaluate Siloz’s security, I run an extended version of the Blacksmith [125] Rowhammer
fuzzer to attempt bit flips.

To evaluate Siloz’s effect on execution time, I run redis+YCSB [36, 55] and terasort from
Hadoop [230] in line with related work [82]. I also run the SPEC CPU 2017 and PARSEC 3.0
benchmark suites used in related work [82, 161, 347].

To evaluate Siloz’s effect on memory throughput, I run memcached [133] and SysBench
mySQL [162], as well as Intel’s Memory Latency Checker (MLC) v3.9a [306], which uses per-
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Observed Bit Flips? DIMM
A B C D E F

Inside Subarray Group yes yes yes yes yes yes
Outside Subarray Group NO NO NO NO NO NO

Table 5.4: Siloz’s contains bit flips to a hammering domain’s subarray group (§5.7.1), preventing
inter-VM hammering.

formance counters to measure throughput.
We run performance benchmarks in an unmodified Ubuntu 22.04 VM using KVM [157] accel-

eration with QEMU [20] v6.2.0 (i.e., Ubuntu 22.04’s version). Select mmap() calls are modified to
request memory from guest-reserved nodes (§5.5.3).

VMs are provisioned with all 40 logical cores from socket 0 and 4 GB of DRAM per logical
core (160 GB total). Multi-threaded workloads are executed with a thread per logical core (40
total), except for PARSEC workloads, which require a power-of-2 number of threads and are thus
executed with 32 threads. Guest memory is statically allocated, pinned, not oversubscribed, and
backed by 2 MB host huge pages, as done by multiple major cloud providers [176, 282, 305].

5.7.1 Security

We assess two aspects of Siloz’s security. First, I determine whether Siloz can contain hammering
to a domain’s exclusive subarray group(s)—or alternatively put, whether Siloz can eliminate inter-
VM bit flips. Second, I determine whether Siloz can prevent bit flips in designated rows (i.e., EPTs
rows).

We generate bit flips in the baseline system using a modified version of Blacksmith [125]
Rowhammer fuzzer (i.e., a fuzzer that attempts to find hammering patterns that induce bit flips
despite state-of-the-art hardware mitigations), which I have extended to support server DIMMs. I
then compare Blacksmith’s effectiveness when running under Siloz.

Hammering Containment. I first pin Blacksmith to a subarray group in Siloz, where I only
observe bit flips in the group, as expected. I left the system running for 24 hours, such that any
bit flips potentially undetected by Blacksmith would be detected by ECC patrol scrubbing (which
checks every row at least once per 24 hours). While I observed bit flips in all of the socket’s
DIMMs (and across ranks and banks in the DIMMs), none of these bit flips occurred outside of the
subarray group (Table 5.4). Thus, I confirm Siloz’s ability to contain hammering to provisioned
subarray groups.

EPT Bit Flip Prevention. To assess Siloz’s ability to prevent bit flips in designated rows (e.g.,
EPT rows), I run Blacksmith with disjoint (a) groups of 32 consecutive logical rows protected
according to Siloz’s guard row-based mitigation, and (b) other groups of 32 rows unprotected in

92



pa
rse

c
red

is-A
red

is-B
red

is-C
red

is-D
red

is-E
red

is-F spe
c

ter
aso

rt

GMEA
N

2.5
2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0
2.5

Ba
se

lin
e-

No
rm

al
ize

d
Ex

ec
ut

io
n 

Ti
m

e 
Ov

er
he

ad
 (%

)

Baseline
Siloz

Figure 5.4: Baseline-normalized execution time (§5.7.2) for Siloz. Error bars depict 95% confi-
dence intervals. Lower is better.

the same subarray group. As expected, I do not observe bit flips in the protected rows, while I do

observe bit flips in the unprotected rows. I also note that all bit flips observed during our hammering
containment tests were in non-EPT rows. Thus, I demonstrate Siloz’s efficacy in preventing EPT
bit flips.

5.7.2 Execution Time

We evaluate Siloz’s effect on execution time against redis+YCSB, Hadoop terasort, and the SPEC
CPU 2017 (SPECspeed) and PARSEC 3.0 benchmark suites. I include all six YCSB core work-
loads A–F. I omit PARSEC’s supplemental network benchmarks due to occasional deadlock in the
benchmarks on all kernels (i.e., including the unmodified baseline).

As shown in Fig. 5.4, I find that Siloz’s geometric mean timing shows < 0.5% difference from
baseline timing, demonstrating Siloz’s negligible effect on execution time. Because Siloz only
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Figure 5.5: Baseline-normalized throughput (§5.7.3) for Siloz. Error bars depict 95% confidence
intervals. Lower is better.

affects the location of boot-time allocations for each VM, one would not expect significant runtime
effects, consistent with our results. Nonetheless, I consider potential sources of varied execution
time for completeness.

Beyond the noise present in each benchmark, potential sources of execution time improvement

for Siloz stem from Siloz’s relatively-stringent NUMA locality enforcement. For instance, I found
that when running redis-B in a slightly-modified baseline (specifically, with Siloz’s constraints on
EPT allocations, and no other changes), performance slightly improved. I note that better NUMA
locality for EPTs is currently being reviewed for the Linux kernel [274].

Potential sources of execution time worsening for Siloz stem from Siloz’s need to iterate over
a greater quantity of (logical) NUMA nodes than the baseline, especially in I/O-bound work-
loads where the host kernel is more active. However, Siloz’s subarray size sensitivity experiments
(§5.7.4) indicate that noise is a more likely culprit.
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5.7.3 Throughput

We measure Siloz’s effects on memory throughput using memcached, Sysbench mySQL, and Intel
MLC. MLC workloads are differentiated by all reads (mlc-reads), read:write ratios (mlc-3:1, mlc-

2:1, and mlc-1:1), and a STREAM triad-like benchmark [204] (mlc-stream). As shown in Fig. 5.5,
Siloz yields < 0.5% difference from baseline geometric mean throughput.

Factors affecting increases and decreases in throughput are similar to those affecting execution
time (i.e., Siloz’s more stringent NUMA enforcement and management of a greater number of
NUMA nodes). Additionally, both bandwidth and execution time can be affected by address-
dependent cache slice/set indexing functions [122, 201, 335]; specific addresses vary between the
baseline and Siloz due to Siloz’s subarray group address range constraints. However, because Siloz
still manages contiguous regions much larger than those of commonly-optimized access patterns,
it is unsurprising that there is no clear performance difference. Given that mean bandwidth and
execution time are well-within the confidence intervals of individual benchmarks, I conclude that
Siloz’s mean differences are insignificant.

5.7.4 Subarray Size Sensitivity

While I are unaware of modern server DIMMs using the lower bound (512 rows) and upper bound
(2048 rows) for conventional modern subarray sizes [308], I can nonetheless measure Siloz sen-
sitivity to such sizes by modifying Siloz’s presumed subarray size (passed as a boot parameter,
§5.5.3).

In particular, because DDR standard access timings do not vary across subarrays [126], and
varying the subarray size does not change the degree of bank-level parallelism available to each
subarray group (§5.4), I can measure Siloz’s performance on “artificial” subarray groups without
loss of accuracy. I note that such artificial groups do not work for evaluating security without
additional considerations (§5.6), because unlike access time and bank-level parallelism, isolation
properties change across subarrays.

For clarity, I refer to the “original” Siloz variant run on our evaluation’s server as Siloz-1024
(since the true subarray size is 1024 rows), and compare it to variants Siloz-512 and Siloz-2048.
Notably, Siloz-512’s smaller subarray group sizes means twice as many logical NUMA nodes as
Siloz-1024 are needed to represent the correspondingly-larger number of subarray groups. Like-
wise, Siloz-2048’s larger subarray group sizes require half as many nodes as Siloz-1024.

As shown in Fig. 5.6 (execution time) and Fig. 5.7 (throughput), I find < 0.5% geometric mean
overheads for the performance of Siloz-512 and Siloz-2048 when normalized to that of Siloz-1024.
The fact that there are no clear trends (nor significant differences) in mean timing and bandwidth
as a function of subarray size is expected, given that subarray size does not effect DDR access
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Figure 5.6: Siloz-1024-normalized execution time when varying from 512 to 2048 row groups per
subarray group (§5.7.4). Error bars depict 95% confidence intervals. Lower is better.

times nor bank-level parallelism.
Furthermore, the lack of a trend is further indicative that the number of NUMA nodes does not

play a significant role in performance, and that the most likely source of performance differences
among the baseline and Siloz variants is simply noise. In particular, if NUMA node iterations
played a significant role in performance, one would expect the Siloz variant with the fewest nodes
(Siloz-2048) to outperform the one with most nodes (Siloz-512), which is not the case.

5.8 Discussion

5.8.1 Memory Fragmentation

VMs (especially micro-VMs [1, 312]) may have finer-grained DRAM demands than Siloz’s sub-
array group size for a given server configuration. Thus, provisioning an entire subarray group for

96



mem
cac

he
d

mlc-r
ea

ds

mlc-3
:1

mlc-2
:1

mlc-1
:1

mlc-s
tre

am
mysq

l

GMEA
N

2.5
2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0
2.5

Si
lo

z-
10

24
-N

or
m

al
ize

d
Th

ro
ug

hp
ut

 O
ve

rh
ea

d 
(%

)

Siloz-512
Siloz-1024
Siloz-2048

Figure 5.7: Siloz-1024-normalized throughput time when varying from 512 to 2048 row groups
per subarray group (§5.7.4). Error bars depict 95% confidence intervals. Lower is better.

relatively small needs (e.g., a 1.5 GB subarray group to a VM needing 512 MB) risks wasting
significant DRAM.

While major cloud providers often already offer VM sizing at similar granularity to Siloz
[207, 282], there are nonetheless two key ways to mitigate potential fragmentation. First, mul-
tiple VMs may be safely provisionable in the same subarray group if they belong to the same
trust domain (e.g., tenant). Second, the subarray group size may be adjustable on systems that
support restricted interleaving (e.g., disabling interleaving across memory controllers, as done for
sub-NUMA clusters [209]) to better align with VM needs; the subarray group size linearly de-
creases with the number of banks touched by each page (§5.4.1). In future systems, greater control
over physical-to-media address mappings [39] could allow Siloz to make dynamic trade-offs for
different VM sizes.
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5.8.2 Considerations for Other DRAM Technologies

While today’s DDR4 DRAM is already widely-deployed, DDR5 and HBM2 DRAM are being
increasingly-deployed in servers and are still vulnerable to Rowhammer [151, 232]. I thus discuss
how differences in DDR5 and HBM2 could impact Siloz’s implementation.

First, memory controllers may use different physical-to-media address mappings for these mod-
ules, requiring updated versions of Siloz’s drivers for DDR4 DIMMs [102, 119]. Second, DDR5
and HBM2 can provide greater bank-level parallelism than DDR4 by increasing the number of
banks per rank (and hence, per physical node). Thus, the upper bound of Siloz’s subarray group
sizes could proportionally increase in these geometries, yielding coarser-grained memory manage-
ment/provisioning (which can be offset using techniques described in §5.8.1).

In addition to these implementation effects, DDR5 standards actually ease subarray group isola-
tion for non-power-of-2 subarray sizes. Specifically, DDR5 stipulates that any DIMM-internal ad-
dress mirroring and inversion for signal routing and integrity (§5.6) must be undone upon arriving
at each DRAM device [130], potentially to ease reasoning about DRAM faults/errors. Thus, Siloz
would not have to create artificial subarray groups for non-power-of-2 subarray sizes in DDR5, as
all devices use the same internal addresses.

5.8.3 Alternate EPT Protection

While Siloz provides EPT integrity using guard rows or emerging hardware extensions [8, 117],
I emphasize that a variety of EPT bit flip mitigations can help to enforce Siloz’s subarray group
isolation. For instance, a state-of-the-art SoftTRR-like [347] software refresh routine could peri-
odically refresh EPT rows to protect their values against bit flips.

We chose to use guard rows instead of a software refresh routine because of the difficulty of
providing real-time guarantees in the Linux kernel [193], especially in many-core, generic pro-
duction environments. I found that scheduling a software refresh routine to run every 1 ms (as
would be required to protect EPT rows via periodic refresh [347]) did not consistently meet 1 ms
deadlines between refreshes. Rather, I observed at least 1 ms intervals due to Linux scheduling
semantics [290], even observing a period greater than 32 ms between software refreshes (over 32
times a safe period).

To avoid scheduling delays, I instead ran the refresh routine immediately upon receipt of a
periodic timer tick interrupt (i.e., during the interrupt request, rather than as its own task). I first
found that I had to deactivate Linux optimizations that disable the timer tick on idle cores for power
and performance savings [4,263,277,314]. Then, despite forcing tick interrupts to unconditionally
fire, I found that the interrupts could still be delayed or dropped for various reasons [4, 263, 277,
314], such as interrupts being disabled. These delayed/dropped tick interrupts resulted in missed
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refresh timing deadlines, leaving EPTs vulnerable to bit flips even in the presence of redundant
ticks, tick skew [99] across cores, and performance-costly real-time kernel patches.

Ultimately, real-time hardware is required to provide timing guarantees [193], which is not
generally-practical for already-deployed cloud servers.

5.8.4 Broader Applicability to DRAM Isolation

Siloz uses logical NUMA nodes to manage subarray groups for Rowhammer isolation; however,
cloud providers could use logical NUMA nodes to manage other units of DRAM isolation (e.g.,
banks, ranks, channels, or memory controllers). These units of isolation are attractive in that they
could provide VMs with security isolation against additional DRAM timing [237] and power [50]
side channels, as well as performance isolation (e.g., memory controller scheduling [212]).

The key challenge to extending Siloz’s abstractions beyond subarray groups is the compatibility
of physical-to-media address mappings. Given mappings that interleave a memory page across a
physical node’s banks (§5.2.4), these forms of isolation are not feasible in default configurations.
However, extended addressing control (§5.8.1) could enable Siloz’s application to these units,
allowing cloud providers to offer a richer set of isolation options. Alternatively, modifying future
DRAM to support subarray-level parallelism [153] could allow subarray groups themselves to
offer such protection, mitigating forms of inter-domain DRAM interference not yet handled by the
baseline or Siloz.

5.9 Related Work

Rowhammer attacks/analyses. Rowhammer bit flips were publicized in 2014 [152], spurring
attacks/analyses [50,51,52,53,59,72,75,91,92,98,124,125,131,147,152,152,160,160,167,180,
185, 190, 215, 218, 219, 221, 232, 233, 241, 250, 261, 269, 288, 289, 299, 300, 325, 328, 346]. These
works motivate Siloz’s Rowhammer protection.

Rowhammer mitigations. Beyond deployed-but-vulnerable mitigations discussed in §5.2.5,
other hardware and software mitigations offer a range of security-performance trade-offs and are
not known to be deployed [13,16,21,27,31,41,63,73,74,81,84,96,97,106,132,134,147,149,150,
151,152,161,171,175,183,185,199,200,236,242,256,262,300,308,319,322,330,336,337,348].
I analyze mitigations most-related to Siloz in §5.3. To our knowledge, Siloz is the first mitigation
to offer comprehensive and high-performance protection against inter-VM hammering.

Other DRAM Side Channels. DRAMA [237] shows that DRAM accesses can leak infor-
mation through timing side channels, such as bank conflicts. HammerScope [50] shows similar
leakage through power side channels. Proposed mitigations [61, 272, 309, 350] are largely-based
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on avoiding simultaneous contention for a DRAM resource (e.g., a bank). Combining these miti-
gations with Siloz’s inter-VM Rowhammer protection is a potential avenue for future work.

Subarrays. mFIT [52] reverse engineers server DDR4 DRAM module subarray sizes and
demonstrates that Rowhammer attacks are ineffective across subarrays, as asserted in prior work
[183, 330]. X-ray [221] similarly infers subarray structure in select DDR4 and HBM2 modules.
Siloz builds on these findings and insights to mitigate inter-VM hammering via subarray group
isolation. Other work proposes using subarrays for efficient in-DRAM data movement [43, 308]
and implementing subarray-level parallelism for DRAM activations [153] and refreshes [329], per-
formance optimizations from which Siloz-isolated VMs may benefit. Furthermore, such forms of
subarray-level parallelism could help Siloz additionally mitigate inter-VM performance interfer-
ence (e.g., bank conflicts among different subarray groups) and associated timing side channels.

5.10 Conclusion

In this work, I have presented Siloz, a hypervisor that brings memory isolation domains to the cloud
in the form of DRAM subarray groups. Already on today’s hardware, Siloz provides VMs with
efficient and comprehensive protection against inter-VM hammering. I hope that Siloz’s effec-
tiveness and practicality spur further development of memory isolation domains against additional
forms of interference.
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CHAPTER 6

Future Work and Conclusion

In light of emerging trends in Computer Science, my dissertation research offers three key direc-
tions for future work.

6.1 Microarchitectural Context Isolation for Performance

The benefits of microarchitectural context isolation can be extended beyond security and reliabil-
ity into the realm of performance isolation. In particular, it is well-known that contexts sharing
microarchitectural structures—including those exploited in both transient execution attacks and
Rowhammer attacks—can degrade each other’s performance [12, 214]. Therefore, isolating con-
texts in these structures offers the potential to improve performance, in addition to the security and
reliability improvements provided in this dissertation.

For instance, in processor microarchitectures, a save-and-restore scheme for performance-
critical [30] state could eliminate significant sources of context switching performance overheads,
while also providing inter-context security isolation. In DRAM microarchitectures, rethinking the
trade-offs between bank interleaving and row buffer locality in DRAM addressing [184] could limit
various forms of timing interference, including bank conflicts that play a role in both Rowhammer
attacks and performance degradation. Demonstrating microarchitectural context’s ability to pro-
vide both security and performance isolation would spur its viability in commodity cloud systems.

6.2 Coherence-Induced Hammering in Emerging Architec-
tures

MOESI-prime (chapter 4) shows that commodity coherence protocols in socket-based ccNUMA
architectures use DRAM so liberally as to yield coherence-induced hammering during inter-node
data sharing. Two emerging ccNUMA architectures could increase the likelihood of such hammer-
ing without careful design, therefore warranting further analysis and potential mitigations.
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First, the advent of chiplet server architectures [3] (to a first approximation, sub-socket NUMA
nodes) means that inter-node sharing is likely to increase. In particular, fewer cores per chiplet-
based node (as compared to per socket-based node) may necessitate increased inter-node data
sharing, potentially resulting in more frequent hammering.

Second, the rise of CXL servers [273]—which enable fine-grained, coherent data sharing among
accelerators and the host—could further increase the likelihood and frequency of coherence-
induced hammering. In fact, the CXL.cache protocol currently uses MESI coherence, which I
have shown can cause hammering via downgrade writebacks without careful design (§4.3.2). The
CXL.mem protocol includes optional support for a 2-bit memory directory, which I have likewise
shown is a source of hammering without additional considerations (§4.3.3).

In addition to the security and reliability threats identified in MOESI-prime, coherence-induced
hammering in these architectures could pose a greater threat to performance and energy consump-
tion, given the potential increase in inter-node data sharing. Specifically, the minimal performance
and energy impact of hammering observed in (relatively-rare) inter-socket sharing could rise with
(relatively-frequent) inter-chiplet, host-accelerator, and accelerator-accelerator sharing. Thus, fur-
ther research is needed to understand the presence, frequency, effects, and potential mitigation of
coherence-induced hammering on these architectures.

6.3 (Silent) Data Corruption Beyond DRAM

While much of my work focuses on the phenomenon of data corruption/disturbances in DRAM,
the threat of data corruption is likewise increasing in processors [14, 65, 101, 104, 270]; additional
work predicts that corruption rates will similarly rise in other types of memory and storage devices
[216]. Thus, circuit-level interference effects [28, 46, 69, 88, 166, 168, 246, 257, 275, 292] will be
increasingly felt across a wide variety of computer hardware as the industry scales to denser (more
susceptible) process nodes.

To mitigate this susceptibility, future research can compare and contrast the conditions leading
to data corruption in various computer hardware (e.g., processors versus DRAM). One particularly
interesting direction would be an analysis of data patterns leading to highest-likelihood of errors in
vulnerable processors, similar to analysis of patterns in prior work on DRAM [52]. Given knowl-
edge of such patterns, it may be possible to (a) increase the likelihood and speed of discovering
circuit-level defects, and (b) decrease the likelihood of errors in production by biasing systems
against using the worst-case data patterns.
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6.4 Conclusion

In this dissertation, I have presented four first-author papers that offer efficient mechanisms to
improve microarchitectural context isolation for cloud security and reliability. DOLMA (chapter 2)
provides an effective mitigation against transient execution attacks, while mitigations proposed in
Stop! Hammer Time (chapter 3), MOESI-prime (chapter 4), and Siloz (chapter 5) prevent various
forms of Rowhammer attacks/behavior.

Together, my work demonstrates that microarchitectural context isolation in CPUs and DRAM
can efficiently mitigate prominent hardware-based vulnerabilities in cloud systems. Microar-
chitectural context isolation’s focus on the most crucial and expected form of cloud hard-
ware isolation—inter-domain—enables efficient and effective protection, while avoiding the
notoriously-challenging burden of preventing every possible hardware vulnerability at its source.

In fact, microarchitectural context isolation’s combination of efficiency and effectiveness is
precisely what renders it such an enticing mitigation option; such isolation naturally extends the
architectural context isolation principles upon which the systems and architecture communities
have built existing hardware and software, even improving performance in some cases. Just as
architectural context isolation provides a viable path to security at the hardware-software interface,
so too does microarchitectural context isolation in the hardware implementation. As emerging
architectures and denser process nodes continue to push the reliability, security, and performance
limits of computer hardware, microarchitectural context isolation techniques offer feasible options
for combining reliable and secure operation with high performance.
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Själander. Efficient invisible speculative execution through selective delay and value pre-
diction. In IEEE/ACM International Symposium on Computer Architecture (ISCA), 2019.

[260] Ciro Santilli. PARSEC Benchmark . github.com/cirosantilli/parsec-
benchmark/, 2020.

[261] Stefan Saroiu, Alec Wolman, and Lucian Cojocar. The price of secrecy: How hiding internal
dram topologies hurts rowhammer defenses. In International Reliability Physics Symposium
(IRPS), 2022.

[262] Anish Saxena, Gururaj Saileshwar, Prashant J Nair, and Moinuddin Qureshi. Aqua: Scalable
rowhammer mitigation by quarantining aggressor rows at runtime. In IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO), 2022.

[263] Stijn Schildermans, Kris Aerts, Jianchen Shan, and Xiaoning Ding. Paratick: Reducing
timer overhead in virtual machines. In IEEE International Conference on Parallel Process-
ing (ICPP), 2021.

[264] Michael Schwarz, Claudio Canella, Lukas Giner, and Daniel Gruss. Store-to-leak forward-
ing: Leaking data on meltdown-resistant cpus. arXiv preprint arXiv:1905.05725, 2019.

[265] Michael Schwarz, Moritz Lipp, Claudio Canella, Robert Schilling, Florian Kargl, and
Daniel Gruss. Context: A generic approach for mitigating spectre. In Network and Dis-
tributed System Security (NDSS) Symposium, 2020.

[266] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Stecklina, Thomas
Prescher, and Daniel Gruss. Zombieload: Cross-privilege-boundary data sampling. In ACM
SIGSAC Conference on Computer and Communications Security (CCS), 2019.

[267] Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon Masters, and Daniel Gruss. Netspec-
tre: Read arbitrary memory over network. In Kazue Sako, Steve Schneider, and Peter Y. A.
Ryan, editors, Computer Security – ESORICS, 2019.

[268] Martin Schwarzl, Thomas Schuster, Michael Schwarz, and Daniel Gruss. Speculative deref-
erencing of registers: Reviving foreshadow. arXiv preprint arXiv:2008.02307, 2020.

[269] Mark Seaborn and Thomas Dullien. Exploiting the DRAM Rowhammer bug to gain kernel
privileges. Black Hat, 2015. See also http://googleprojectzero.blogspot.co/
2015/03/exploiting-dram-rowhammer-bug-to-gain.html.

[270] Kostya Serebryany, Maxim Lifantsev, Konstantin Shtoyk, Doug Kwan, and Peter
Hochschild. Silifuzz: Fuzzing cpus by proxy. arXiv preprint arXiv:2110.11519, 2021.

[271] Seyed Mohammad Seyedzadeh, Alex K Jones, and Rami Melhem. Mitigating wordline
crosstalk using adaptive trees of counters. In IEEE/ACM International Symposium on Com-
puter Architecture (ISCA), 2018.

124

github.com/cirosantilli/parsec-benchmark/
github.com/cirosantilli/parsec-benchmark/
http://googleprojectzero.blogspot.co/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.co/2015/03/exploiting-dram-rowhammer-bug-to-gain.html


[272] Ali Shafiee, Akhila Gundu, Manjunath Shevgoor, Rajeev Balasubramonian, and Mohit Ti-
wari. Avoiding information leakage in the memory controller with fixed service policies. In
IEEE/ACM International Symposium on Microarchitecture (MICRO), 2015.

[273] Debendra Das Sharma, Robert Blankenship, and Daniel S Berger. An introduction to the
compute express link (cxl) interconnect. arXiv preprint arXiv:2306.11227, 2023.

[274] Vipin Sharma. Numa aware page table’s page allocation. LWN, 2022.

[275] Jih-Sheng Shen, Pao-Ann Hsiung, and Kuei-Chung Chang. A novel spatio-temporal adap-
tive bus encoding for reducing crosstalk interferences with trade-offs between performance
and reliability. In IEEE Asia-Pacific Computer Systems Architecture Conference, 2008.

[276] Zhuojia Shen, Jie Zhou, Divya Ojha, and John Criswell. Restricting control flow during
speculative execution. In ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2018.

[277] Suresh Siddha, Venkatesh Pallipadi, and AVD Ven. Getting maximum mileage out of tick-
less. In Linux Symposium. Citeseer, 2007.

[278] Inderpreet Singh, Arrvindh Shriraman, Wilson WL Fung, Mike O’Connor, and Tor M
Aamodt. Cache coherence for gpu architectures. In IEEE International Symposium on
High Performance Computer Architecture (HPCA), 2013.

[279] Mungyu Son, Hyunsun Park, Junwhan Ahn, and Sungjoo Yoo. Making DRAM stronger
against row hammering. In IEEE/ACM Design Automation Conference (DAC), 2017.

[280] Young Hoon Son, O Seongil, Yuhwan Ro, Jae W Lee, and Jung Ho Ahn. Reducing mem-
ory access latency with asymmetric dram bank organizations. In IEEE/ACM International
Symposium on Computer Architecture (ISCA), 2013.

[281] SPEC. Standard Performance Evaluation Corporation SPEC CPU 2017. spec.org/
cpu2017/.

[282] Androski Spicer. Deep dive on amazon ec2, 2017.

[283] Julian Stecklina and Thomas Prescher. LazyFP: Leaking FPU Register State using Microar-
chitectural Side-Channels. arXiv preprint arXiv:1806.07480, 2018.

[284] Per Stenström, Mats Brorsson, and Lars Sandberg. An adaptive cache coherence protocol
optimized for migratory sharing. ACM SIGARCH Computer Architecture News (CAN),
1993.

[285] Brian K Tanaka. Monitoring virtual memory with vmstat. Linux Journal, 2005.

[286] Xulong Tang, Mahmut Kandemir, Praveen Yedlapalli, and Jagadish Kotra. Improving bank-
level parallelism for irregular applications. In IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO), 2016.

125

spec.org/cpu2017/
spec.org/cpu2017/


[287] Mohammadkazem Taram, Ashish Venkat, and Dean Tullsen. Context-sensitive fencing:
Securing speculative execution via microcode customization. In International Conference
on Architectural Support for Programming Languages and Operating Systems (ASPLOS),
2019.

[288] Andrei Tatar, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. Defeating software mit-
igations against Rowhammer: a surgical precision hammer. In International Symposium on
Research in Attacks, Intrusions, and Defenses (RAID), 2018.

[289] Youssef Tobah, Andrew Kwong, Ingab Kang, Daniel Genkin, and Kang G Shin. Specham-
mer: Combining spectre and rowhammer for new speculative attacks. In IEEE Symposium
on Security and Privacy (S&P), 2022.

[290] Linus Torvalds et al. Linux source code. https://github.com/torvalds/linux,
2023.

[291] C. Trippel, D. Lustig, and M. Martonosi. Checkmate: Automated synthesis of hardware
exploits and security litmus tests. In IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), 2018.

[292] S-W Tu, Y-W Chang, and J-Y Jou. Rlc coupling-aware simulation and on-chip bus encoding
for delay reduction. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 2006.

[293] Paul Turner. Retpoline: a software construct for preventing branch-target-injection. Google,
2018. support.google.com/faqs/answer/7625886.

[294] Unified Extensible Firmware Interface UEFI. Advanced configuration and power interface
specification. ACPI. INFO, Roseville, 2013.

[295] Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L Santoni, Fernando CM Martins, Andrew V
Anderson, Steven M Bennett, Alain Kagi, Felix H Leung, and Larry Smith. Intel virtualiza-
tion technology. Computer, 2005.

[296] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank Piessens,
Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and Raoul Strackx. Foreshadow: Ex-
tracting the keys to the Intel SGX kingdom with transient out-of-order execution. In USENIX
Security Symposium (USENIX Security), 2018.

[297] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp, Marina Minkin, Daniel
Genkin, Yuval Yarom, Berk Sunar, Daniel Gruss, and Frank Piessens. Lvi: Hijacking tran-
sient execution through microarchitectural load value injection. In IEEE Symposium on
Security and Privacy (S&P), 2020.

[298] Jo Van Bulck, Frank Piessens, and Raoul Strackx. Nemesis: Studying microarchitectural
timing leaks in rudimentary cpu interrupt logic. In ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2018.

126

https://github.com/torvalds/linux
support.google.com/faqs/answer/7625886


[299] Victor Van Der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel Gruss, Clémentine
Maurice, Giovanni Vigna, Herbert Bos, Kaveh Razavi, and Cristiano Giuffrida. Drammer:
Deterministic Rowhammer attacks on mobile platforms. In ACM SIGSAC conference on
computer and communications security (CCS), 2016.

[300] Victor van der Veen, Martina Lindorfer, Yanick Fratantonio, Harikrishnan Padmanabha Pil-
lai, Giovanni Vigna, Christopher Kruegel, Herbert Bos, and Kaveh Razavi. GuardION:
Practical mitigation of DMA-based Rowhammer attacks on ARM. In International Con-
ference on Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA),
2018.

[301] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo, Giorgi Maisuradze,
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